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Abstract. 

We considered the following natural conjecture: For every sorting algorithm every key will be 
involved in t2(logn) comparisons for some input. We show that this is true for most of the keys 
and prove matching upper and lower bounds. Every sorting algorithm for some input will involve 
n-n~/2+t keys in at least elog2n comparisons, e > 0. Further, there exists a sorting algorithm 
that will for every input involve at most n -  n ~/c keys in greater than e log2 n comparisons, where c 
is a constant and e > 0. The conjecture is shown to hold for "'natural" algorithms from the literature, 

CR categories: F,2.2. 
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1. Introduction. 

It is well-known that  the information-theoret ic lower bound  for compar ison-  
based sorting algori thms is [log2 n ! ] = t2(n log n) comparisons,  for n keys. We ask 

whether o r  not  we can expect those compar isons  to be evenly distributed over 
the keys. Clearly some algori thms on some inputs will use fewer total comparisons  
and some keys can be rarely used. However,  we want  to know if every sort ing 
algori thm has some inputs which cause the distribution of comparisons  to be 
"equitable", i.e., no  key being involved in just a few comparisons.  We restrict 

our  at tention to algori thms that  use pair-wise comparisons.  
The motivat ion for s tudying the distribution of  compar isons  came f rom 

applications where the cost  of  compar ing  two keys is not  uniform and  depends 

on the keys being compared.  Such situations arise when the keys have widely 
varying lengths and also when different keys reside in different parts  of  memory  
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with differing access times. In such cases traditional algorithms such as quicksort, 
heapsort, etc. may no longer be suitable because of non-uniform costs of com- 
parisons; under such circumstances a desirable sorting algorithm would try to 
involve a costlier key in fewer comparisons. Furthermore, the known Q(n logn) 
lower bound on the total number of comparisons would not necessarily translate 
into a meaningful lower bound on the worst case cost (running time) of a sorting 
algorithm. This suggests that a new program of research should be initiated, for 
comparison-based algorithms (for sorting, selection, etc.), that isolates the com- 
parisons made by the individual keys. An initial detailed study for small n has 
appeared [9]. We return to this application in the conclusions. 

Our original goal was to establish the following conjecture, which seemed to 
be the best possible uniform conjecture. 

Equitable Sorting Conjecture: Every sortin# algorithm ./or some input will 
invoh'e every key in •(1o9 n) comparisons. 

The reason we say it is best possible is because of the results of Ajtai, Komlos, 
and Szemeredi [1]. They gave a sorting network that used only O(log n) time and 
O(n) processors. It is an immediate consequence that a serialization of the 
network will involve every key in only O(logn) comparisons. Their result is of 
course much stronger so it is surprising it is the first serial algorithm with this 
property we have seen. (Is there a simple serial sorting algorithm such that 
every key is always in O(logn) comparisons?) 

The conjecture is false. After investigating various complicated lower bound 
arguments we discovered a sorting algorithm which guarantees one key will be 
involved in at most 3 comparisons! This algorithm and its generalizations will be 
discussed in section 5. Our "partial results" in sections 2, 3, and 4 turned out to 
be close to the upper bounds. Lower bounds on costs of sorting algorithms can 
be obtained from these partial results for various distributions of costs of key 
comparisons. The main proof technique we have tried is the use of adversaries 
or oracles. Many different mechanisms for the adversaries have been tried and 
some will be described below. In section 6 we discuss the validity of the 
conjecture for "'natural algorithms". 

2. Preliminary results. 

Any comparison-based sorting algorithm can be presented as a decision tree. 
Each input (a set of n keys) forces the computation to follow some path in the 
decision tree from the root to a leaf. We will refer to inputs and such paths 
interchangeably, depending on the context. While it may be possible for some 
set of keys to be avoided to some extent, it is easy to see that no particular 
key can be uniformly ignored. 
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LEMMA 1: For every sortiny algorithm any particular key will be involved in 
Q(log n) comparisons for  some input. 

PROOF. Choose any key x and assume an arbitrary total ordering for the other 
n - 1  keys. Modify the decision tree by removing all unnecessary comparisons, 
i.e., those that are answered by the assumptions. (See [7] for examples of such 
modifications.) What remains must be the tree for an algorithm for inserting x 
into a sorted list of n -  1 keys, with x involved in every comparison. It is well 
known that such a tree has a path of length f2(log n). Since the nodes on such 
a path are all on a single path in the original tree the result follows. I 

Our principal result is that most, but not all, of the keys satisfy the lower 
bound of the conjecture. There has been no known previous work on this type 
of result ; most lower bounds arguments are oblivious to the identities of the keys. 
However, the techniques of Atallah and Kosaraju [2] can be used. (Their 
work was only concerned with typical lower bounds.) 

THEOREM 1 : Every sortin 9 algorithm for  some inputs will involve n - n ~ + I keys 

in at least e logz n comparisons, ~ > O. 

PROOF. We will just sketch the technique ; the interested reader is referred to [2]. 
It can be shown, for any 1 < k < n, that any n - k  keys can be made to be 
involved in at least l ogz (k+ l )compar i sons  each. Note that if k = n / 9 ( n ) - I  
we have n -  n/g(n) + 1 keys each involved in log2 n -  log2 9(n) comparisons. We 
let 9(n) = n 1-~. So n - n ~ +  1 keys are each in e log" 2 n comparisons. I 

As e decreases more keys satisfy the conjecture, albeit With respect to a 
smaller coefficient. Essentially the same result will be derived in the next two 
sections. We feel each additional proof gives further insight into the problem. 

3. Poset-based adversaries. 

In this section we consider adversaries that make use of the poset formed by 
their prior answers to comparisons. It can inspect the two possible posets resulting 
from a comparison and choose, by some criterion, the poset that promises to be 
the most "equitable", in some sense. We have investigated several functions the 
adversary could use based on known techniques, e.g. [10] and [4]. These 
attempts, detailed in [8], were not successful as we found no mechanisms for 
isolating the direct and indirect effects on individual keys over time. 

The adversary in this section uses a function on the elements of a poset. In 
particular for the poset P, we considered h(x) where x e P  and 0 < h ( x ) <  1. 

Let h(S) = ~_~xEsh(x), where S is some subset of the elements of P. The adversary 
maintains the condition that h(C) < 1 for every chain C in P. Griggs 1-5] studied 
such functions but did not consider dynamically changing posets. Maintaining 
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The case of n :p 2 k is similar. 
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such a function led naturally to the adversary described in the next paragraph.  

Initially P is an antichain and h(x) = 1 for each x ~ P. We want  to cont inue 
to have h(C) < 1 for all (maximal) chains as we sort. When  we answer a :b  

we halve h(a) and h(b); therefore if h(a) = 2 -k we know a has been in k com-  
parisons. (For our  analysis we can assume a and b are incomparable.)  Fur ther  
we look at P< and P>,  the two possible resulting posets, and choose the one 

with the lightest (i.e. least h(C)) chain th rough  a and b. The following results 
shows that if h(C) < 1 for all C in the poset before a compar ison  then it will 

be true in the poser resulting from the adversary 's  resolution of the comparison.  

LEMMA 2: For every sorting algorithm any comparison a:b can be answered 
so that in the resulting poset h(C) <- 1, Jor each chain C, prorided that h(C) <- 1 
held Jor each C be/bre the comparison. 

PROOF. The basis of an inductive argument  is clear. Consider the maximal chains 

above and below a and b before the comparison.  Let U,, be the maximum cost 
of a chain with a as it least element with the cost of  a, h(a), subtracted out. 

Let Do be the maximum cost of a chain with a as it greatest element, again with 
h(a) subtracted out. Suppose that there must  be a chain C with h(C) > 1 ; then 
it tollows that  

However,  by hypothesis 

(U ,+h(a )+D, )+(Ub+h(b )+Db)  <- 2. • 

Clearly when sorting is completed the poset P is a total order, a single chain, 

and therefore h(P) -< 1, Alternatively, ~xee2  -ctx) _< 1 where x was involved in 
c(x) comparisons.  This is an interesting inequality. As an aside we note it provides 

still another  constructive adversary-based proof  of the lower bound for sorting, 

due to the following observation, 

LEMMA 3 : E x e p 2  -c(x) ~ 1 implies ~,xepC(X) = f2(nlogn) Jbr the total order P. 

PRoov. A familiar result relating the geometric and arithmetic means (e.g. [11])  

states 

(YlY2."  y,,)l/,, < (Yl +. . -  + y,)/n. 

Assume n = 2 k. We know 

(2k-c(x~)+...  + 2kc(x"))/n <-- 1 

(2k-c(xd2k-~t~)...2k-c(x")) ~/" <-- 1 

nlog2 n --< ~c(x) .  
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This inequality alone states that not many elements x can have small c(x)'s 
but does not disallow a few. It gives us the following result which slightly improves 
the result in section 2. 

THEOREM 2: Every sorting algorithm Jbr some input will involve n -  n~/2 + 1 keys 
in at least e log 2 n comparisons, e. > O. 

PROOF. Note that only one c(x) could be 1 since it contributes ½ to the sum 
~ 2  -ctx). Similarly only three c(x)'s could be 2 with a net contribution of 3. 

Clearly the maximum number of keys with c(x) < e log2 n is achieved if each such 
key has c(x) = e tog2 n -  1. The number of such keys is bounded by 2 ~'t°g~'-~- t 

which gives the result. • 
It is easy to show that if h(P) < n -~ was always true for the total order then 

the uniform sorting conjecture would follow. However the following result shows 
that this is not nearly true. 

LEMMA 4: For some sorting algorithms we can have 

h(P) >- 1/3+O(2 -"/2) 

Jor the total order P. 

PROOF. Consider the following algorithm which begins by sorting a subset S 
of 3 keys. After some processing we will increase the size of S to 5 sorted keys, 
then 7, and so on. For each size of S we compare all the keys not in S to the 
second smallest key of S, and, in all cases, the second smallest key wins the 
comparison. This is consistent with Lemma 2. After that  we increase the size 
of S by two by sorting the smallest key of S with two keys not in S. Iterate 
until S contains all n keys. 

Because of the regularity of the algorithm we can easily predict the final values 

of h(x) and sum them. The important  point is that h(x) remains comparatively 
large for the largest, the third largest, and so on. For n odd we get 

h(P) = (1 - 2 x -")/3 + 2 2 -n + 2 3-" + 2(3 -.1/2. 

We get a similar expression for n even. • 
It is possible to generalize this approach to take into account how the com- 

parisons were resolved. 1 In particular, let w(x) be the number of comparisons x 
"won" and l(x) be the number of losses; c ( x ) =  w(x)+l(x).  Of course 
~w(x )  = ~l(x).  Define h,(x) = rW<X~(1-r) "x), 0 < r < 1, so that h.5(x) = h(x). A 
result analogous to Lemma 2 can be devised, i.e. we can maintain h,(C) < 1 for 
all C. However, it is not clear how to take advantage of this formulation. 

1~ Personal communication from M. Pleszkoch, 1985. 
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4. Binary tree based adversaries. 
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We can derive the result in Theorem 2 by yet another approach. We present 
an adversary that responds in an automatic fashion based on a binary tree data 
structure it maintains. Since a sorting algorithm could take advantage of the 
adversary's determinism it is surprising that we can get stronger results than with 
the poset-based adversary. This adversary was invented independently and used 
to prove (unrelated) results about  searching with preprocessing [3] 2 

The data structure is an infinite binary tree with tokens distributed over the 
nodes. It is convenient to regard the infinite subtrees without any tokens as 
being pruned away. The tokens, labeled 1, 2 . . . . .  n, are identified with the keys. 
Initially all n tokens are at the root. Let n(i) be the node containing token i. 
To answer a comparison about the ith and j th keys the adversary locates the 
tokens labeled i and j in the tree. It maintains the following invariant: 

If n(i) is an ancestor of n(j) then the corresponding keys are incomparable. 
Otherwise, if n(i) is to the left of n(j), relative to their least common ancestor, 
then the ith key is less than jth key. 

The adversary does not move any tokens in response to a comparison that is 
already answered by the invariant. If, say, n(i) is a proper ancestor of n(j) then 
the token j is not moved and the token i is moved to the right (left) son of 
n(i) if n(j) is in its left (right) subtree. If n( i ) -  n(j) then, arbitrarily, token i 
is moved to its left son and token j is moved to its right son. 

As the sorting process progresses the tokens move down away from the root. 
It is clear that the invariant is maintained. Therefore, when sorting is done no 
token can be the ancestor of another. The following claim is easily verified: 
No node has tokens in one of its subtrees while having no tokens in its other 
subtree. We can now give an alternative proof of Theorem 2. 

PROOV (Theorem 2): From the above claim we see that the infinite tree when 
pruned after sorting gives a full binary tree with n - 1  internal nodes and n 
leaves, each leaf with a single token on it. Let depth(t,) be the depth of a node r in 
the tree. Since a token only moves during a comparison we have c(i) >_ depth(n (i)), 
where c(i) is the number of comparisons the ith key is involed in, as before. 

It is known (e.g., [6], problem 2.3.4.5-3) that if I1, t2 . . . . .  I, are the leaves of a 
full binary tree then ~2  -depth(l') = 1. Therefore it follows that ~ 2  -~i) _< 1. The 

remainder of the proof follows as before. I I  
It is bothersome, due to the definition of the adversary, that c(i) can be much 

greater than depth(n(i)). One attempt to correct for this has a token move after 

2~ This was treated in more depth in the unpublished manuscript ~'Insert-Search Tradeoff," by 
N. Lynch, 1978. 
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every comparison involving it. Unfortunately this causes more difficulties than it 
resolves. However, we can go further than the above proof. 

Let v be a node in the tree and L(v) and R(v) be the set of tokens in its left and 
right subtrees, respectively. For a set of tokens T, let C(T) be the sum of the com- 
parison counts for the keys associated with those tokens, i.e. C(T) = Y'i~TC(i). 
The following theorem states that while the resulting binary tree can be skewed, 
with perhaps only a few tokens in the left subtree, the distribution of com- 
parisons is not as skewed. One, of many possible, corollaries is given to show 
how to apply the result. Let S(n) be the number of comparisons needed to sort 
n keys. 

THEOREM 3: For any node v in the binary tree after the sorting process 

C(L(v)) >- Ig(v)l + 2S([L(v)]) + depth(v)lL(v)[ 

as well as with L and R interchanyed. 

PROOF. Every comparison for a key now in the left subtree of v involved a 
second key that is now in the right subtree, the left subtree, or elsewhere in the 
tree. Every key now in the right subtree got there by a comparison of the first 
type. This gives the [R(v)l term. Only keys in the left subtree are relevant in 
sorting those keys, hence the second term. Note that each such comparison is 
double-counted in the summation. Finally, the total number of comparisons 
involving the tokens before they arrived at node v is bounded by the third 
term. II  

COROLLARY 1: I f  one key was involved in only 2 comparisons then another key 
was involved in at least n - 2  comparisons. 

PROOF. Let the ith key be involved in just two comparisons, i.e. c(i) = 2. By 
the theorem n(i) cannot be a son of the root, so n(i) is at depth 2. The sibling 
node of n(i) must contain a token i'. Otherwise the theorem would be violated 
at their mutual parent v. Hence, applying the theorem at the root, c(i')+c(i) > 
> ( n - 2 ) + 2 + 0 ,  since S(2) = i. I I  

5. Up~r ~ u ~ s .  

We begin by showing that there exists an algorithm that can effectively avoid 
using at least one of its keys in many comparisons. The algorithm sorts by 
repeatedly inserting a new key into a previously sorted sublist S. Initially S 
is created by sorting three keys, obviously not using more than two comparisons 
per key. The algorithm finds the least-used key x in S and compares the new key z 
with the keys w and y which are just less and just greater than x in S, 
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respectively. If w < z < y then compare z with x and stop, otherwise avoid x. 
Note that w or y may not exist creating simpler special cases. 

THEOREM 4: There exists a sortin9 algorithm that involves at least one key in 
at most three comparisons Jbr ever), input. 

PROOV. A simple inductive proof  can be based on the above algorithm. By 
hypothesis x has been in at most 3 comparisons. If z is compared against x 
then z assumes x's role in the hypothesis. []  

We have been able to show that even more keys can be "shy". The following 
lemma for f ( n )  keys, f (n )  an arbitrary function, is the principal result. 

LEMMA 5: There exists a sorting algorithm which will invoh,e at least f ( n )  > 1 

keys in 0(1o9 f (n)) comparisons. 

PRoov. We will show that some J(n) keys will be in at most Cl log2f(n)  com- 
parisons, cl a constant, for the following insertion sorting algorithm. As above, 
the algorithm, after some preprocessing, has a sorted subtist S. On each iteration 
it picks a previously unused key and inserts it into S. We identify S with its 

total order and speak of a key being (immediately) above or below another. 
It is convenient to add the two keys oc and - ~c to S. 

First sort 2f(n) keys. (The case n < 2f(n) follows directly from the following 
discussion.) Recall there exists a sorting algorithm for m keys that does not 
involve any key in more than c2 Iog2 m comparisons, c2 a constant [1]. Using 
that algorithm during preprocessing we will not use more than c2 log2f (n)+c2  
comparisons per key. This provides the basis, with c~ > 2cz, for our inductive 
assertion: After each insertion there are f (n )  keys in S, each involved in at most 
c~ log2f(n) comparisons and, further, they are separated in S by other keys. 

The algorithm identifies these keys, x~ < x2 < ... < xj.~,~, and for each xi it 
knows w,i and y~, the keys immediately below and above x~, respectively. Note 
that 3'~ may be wi+l. A binary search with an unused key is conducted over 
the w's and y's. This requires at most log2f{n) + 2 comparisons. If the final interval 
contains an xi then do a final comparison with it, and the new key replaces xi 
in the inductive assertion. Otherwise proceed with the insertion leaving the x's 
unaffected. We see the inductive assertion continues to hold. []  

The next theorem follows directly from the previous result by setting 
f (n )  = n ~/~'', where cl is the constant in the above proof. 

THEOREM 5: There exists a sorting algorithm that will Jor every input involve 
at most n - n  ~/c keys in more than elog2n comparisons, where c is a constant and 
e > 0 .  
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6. Known algorithms. 

In this section we discuss "natural algorithms", i.e. algorithms in the literature, 
as opposed to those in the previous section which were designed to defeat the 
conjecture. All the natural algorithms we have analyzed have satisfied the 
conjecture. We will restrict our attention to the simplest presentation of an 
algorithm since further elaborations were not intended to defeat the conjecture. 
For any definitions not given here see [7]. 

The class of adjacent-interchange algorithms clearly satisfy the conjecture. In 
the same spirit, Quicksort supports the conjecture for those inputs which give rise 
to the O(n 2) worst-case performance. Mergesort is trivially seen to satisfy the 
conjecture, since each key cannot be avoided on each phase and there are 
s2(log n) phases. Similarly for Shellsort, when there are Q(log n) phases. 

The proofs for Heapsort and Binary-Insertion Sort are less obvious. With 
Binary-Insertion Sort it seems some keys might be ignored. A generalization 
of this theorem applies to the Ford-Johnson algorithm. 

THEOREM 6: Binary-Insertion Sort satisfies the conjecture. 

PROOF. A basis for an induction proof is trivial. Assume after 2 k - -  1 keys have 
been inserted, those keys have been in at least k - 1 comparisons each. Now as we 
insert the next 2 k elements, each time "target" one of the original 2 k -  1 keys 
(and one twice) to be compared. Hence all the original elements will have been in 
k comparisons, and each of the new keys have been in k comparisons too. • 

Heapsort is an algorithm in which it can be hard to keep track of each key. 
It is important to initially arrange the keys on the tree of the heap so that each 
key travels a distance equal to the height of the tree cumulatively over the 
"heapify" and sorting stages. 

THEOREM 7: Heapsort satisfies the conjecture. 

PROOF. We sketch the proof  for n = 2 k - 1. Start with the keys in sorted order 
(so that, for example, the smallest is at the root and the largest are at the leaves) 
and then heapify. The effect is that the 2 k- 1 _ 1 smallest keys have gone from the 
internal nodes to the leaves while the 2 k- 1 largest keys have moved up, one level 
at a time, to the internal nodes. (Actually two of the large keys did not move 
but their subsequent behaviors are the same as the other large keys.) 

The theorem follows from the following observations: During the first 2 k- 1 
steps, i.e. deletemax's, in every case the key brought to the root percolates back 
to a leaf. An induction proof can be built on the fact that after these 2 k- ~ 
steps the resulting heap is identical to the original heap constructed in the case 
of n = 2 k- 1_  1, and therefore the observation above can be applied again. It 
follows that every key is at some point at a leaf node and does not decrease 
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its depth, by one level, without being in a comparison. The proof for other 
values of n is similar. • 

Finally we consider the class of non-adaptive sorting algorithms and sorting 
networks; these satisfy the conjecture. Recall that Lemma 1 states that we can 
force any particular key to be involved in f2(logn) comparisons. Since these 
algorithms are unresponsive they must have that property for every key. 

7. Conclusions. 

Theorems 2 and 5 show that there is only a small gap between the upper and 
lower bounds. Further, we conjecture that the constant in Theorem 5 can be 
much smaller than the constructive proof might indicate. In fact it may be 1. 

Recall that this work was motivated by considering keys with varying costs and 
therefore the comparisons they are involved in are not unit-cost operations. 
Results about the distribution of comparisons in sorting algorithms can be used 
to obtain lower bounds. For example, the result that every sorting algorithm 
for some input must involve n - n~/2 + 1 keys in at least e log2 n comparisons leads 
to lower bounds for various natural distributions of costs of key comparisons. In 
particular, if the keys are numbered 1 to n and the cost of comparing i and j 
is i + j  then we obtain an Q(n21ogn) lower bound on the worst case cost of 
any sorting algorithm. 

The results of section 5 do not immediately imply that desirable sorting 
algorithms exist; i.e., algorithms which reduce total cost by avoiding expensive 
keys. For example, if there is just one expensive key Theorem 4 does not imply 
that it can be in just a few comparisons; Lemma 1 actually states the opposite. 
It is an open question whether desirable algorithms exist. A conjectured result is 
that if there is a large enough subset of relatively expensive keys then some of 
those could be "shy" (as in Theorem 5). The best algorithm, to our knowledge, 
seems to be the sorting network serialization discussed above [1] since it 
minimizes the possible deficit from the expensive keys. 

Another interesting avenue in this line of research would be to determine the 
"'profiles" of sorting algorithms. The profile is the sequence of n integers: how 
often the most compared key is used . . . . .  how often the least compared 
key is used. What we have presented are two-step characterizations of these 
profiles. More complete characterizations should be investigated, possibly using 
Theorem 3. 
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