
BIT 28 (1988k 764 774

ON THE DISTRIBUTION OF COMPARISONS
IN SORTING ALGORITHMS

DANA RICHARDS and PRAVIN VAIDYA*

Dept. of Computer Science, Dept. of Computer Science.
University of Virginia, University of Illinois,
Charlottesville, VA 22903, USA Urbuna, IL 61801, USA

Abstract.

We considered the following natural conjecture: For every sorting algorithm every key will be
involved in t2(logn) comparisons for some input. We show that this is true for most of the keys
and prove matching upper and lower bounds. Every sorting algorithm for some input will involve
n-n~/2+t keys in at least elog2n comparisons, e > 0. Further, there exists a sorting algorithm
that will for every input involve at most n - n ~/c keys in greater than e log2 n comparisons, where c
is a constant and e > 0. The conjecture is shown to hold for "'natural" algorithms from the literature,

CR categories: F,2.2.

Keywords: Sorting, lower bounds, adversaries.

1. Introduction.

It is well-known that the information-theoret ic lower bound for compar ison-
based sorting algori thms is [log2 n !] = t2(n log n) comparisons, for n keys. We ask

whether o r not we can expect those compar isons to be evenly distributed over
the keys. Clearly some algori thms on some inputs will use fewer total comparisons
and some keys can be rarely used. However, we want to know if every sort ing
algori thm has some inputs which cause the distribution of comparisons to be
"equitable", i.e., no key being involved in just a few comparisons. We restrict

our at tention to algori thms that use pair-wise comparisons.
The motivat ion for s tudying the distribution of compar isons came f rom

applications where the cost of compar ing two keys is not uniform and depends

on the keys being compared. Such situations arise when the keys have widely
varying lengths and also when different keys reside in different parts of memory

* Current address: AT&T Bell Laboratories, Murray Hill, NJ 07974.
Received December 1987. Revised July 1988.

ON THE DISTRIBUTION OF COMPARISONS IN SORTING ALGORITHMS 765

with differing access times. In such cases traditional algorithms such as quicksort,
heapsort, etc. may no longer be suitable because of non-uniform costs of com-
parisons; under such circumstances a desirable sorting algorithm would try to
involve a costlier key in fewer comparisons. Furthermore, the known Q(n logn)
lower bound on the total number of comparisons would not necessarily translate
into a meaningful lower bound on the worst case cost (running time) of a sorting
algorithm. This suggests that a new program of research should be initiated, for
comparison-based algorithms (for sorting, selection, etc.), that isolates the com-
parisons made by the individual keys. An initial detailed study for small n has
appeared [9]. We return to this application in the conclusions.

Our original goal was to establish the following conjecture, which seemed to
be the best possible uniform conjecture.

Equitable Sorting Conjecture: Every sortin# algorithm ./or some input will
invoh'e every key in •(1o9 n) comparisons.

The reason we say it is best possible is because of the results of Ajtai, Komlos,
and Szemeredi [1]. They gave a sorting network that used only O(log n) time and
O(n) processors. It is an immediate consequence that a serialization of the
network will involve every key in only O(logn) comparisons. Their result is of
course much stronger so it is surprising it is the first serial algorithm with this
property we have seen. (Is there a simple serial sorting algorithm such that
every key is always in O(logn) comparisons?)

The conjecture is false. After investigating various complicated lower bound
arguments we discovered a sorting algorithm which guarantees one key will be
involved in at most 3 comparisons! This algorithm and its generalizations will be
discussed in section 5. Our "partial results" in sections 2, 3, and 4 turned out to
be close to the upper bounds. Lower bounds on costs of sorting algorithms can
be obtained from these partial results for various distributions of costs of key
comparisons. The main proof technique we have tried is the use of adversaries
or oracles. Many different mechanisms for the adversaries have been tried and
some will be described below. In section 6 we discuss the validity of the
conjecture for "'natural algorithms".

2. Preliminary results.

Any comparison-based sorting algorithm can be presented as a decision tree.
Each input (a set of n keys) forces the computation to follow some path in the
decision tree from the root to a leaf. We will refer to inputs and such paths
interchangeably, depending on the context. While it may be possible for some
set of keys to be avoided to some extent, it is easy to see that no particular
key can be uniformly ignored.

766 DANA RICHARDS AND PRAVIN VAIDYA

LEMMA 1: For every sortiny algorithm any particular key will be involved in
Q(log n) comparisons for some input.

PROOF. Choose any key x and assume an arbitrary total ordering for the other
n - 1 keys. Modify the decision tree by removing all unnecessary comparisons,
i.e., those that are answered by the assumptions. (See [7] for examples of such
modifications.) What remains must be the tree for an algorithm for inserting x
into a sorted list of n - 1 keys, with x involved in every comparison. It is well
known that such a tree has a path of length f2(log n). Since the nodes on such
a path are all on a single path in the original tree the result follows. I

Our principal result is that most, but not all, of the keys satisfy the lower
bound of the conjecture. There has been no known previous work on this type
of result ; most lower bounds arguments are oblivious to the identities of the keys.
However, the techniques of Atallah and Kosaraju [2] can be used. (Their
work was only concerned with typical lower bounds.)

THEOREM 1 : Every sortin 9 algorithm for some inputs will involve n - n ~ + I keys

in at least e logz n comparisons, ~ > O.

PROOF. We will just sketch the technique ; the interested reader is referred to [2].
It can be shown, for any 1 < k < n, that any n - k keys can be made to be
involved in at least l ogz (k+ l)compar i sons each. Note that if k = n / 9 (n) - I
we have n - n/g(n) + 1 keys each involved in log2 n - log2 9(n) comparisons. We
let 9(n) = n 1-~. So n - n ~ + 1 keys are each in e log" 2 n comparisons. I

As e decreases more keys satisfy the conjecture, albeit With respect to a
smaller coefficient. Essentially the same result will be derived in the next two
sections. We feel each additional proof gives further insight into the problem.

3. Poset-based adversaries.

In this section we consider adversaries that make use of the poset formed by
their prior answers to comparisons. It can inspect the two possible posets resulting
from a comparison and choose, by some criterion, the poset that promises to be
the most "equitable", in some sense. We have investigated several functions the
adversary could use based on known techniques, e.g. [10] and [4]. These
attempts, detailed in [8], were not successful as we found no mechanisms for
isolating the direct and indirect effects on individual keys over time.

The adversary in this section uses a function on the elements of a poset. In
particular for the poset P, we considered h(x) where x e P and 0 < h (x) < 1.

Let h(S) = ~_~xEsh(x), where S is some subset of the elements of P. The adversary
maintains the condition that h(C) < 1 for every chain C in P. Griggs 1-5] studied
such functions but did not consider dynamically changing posets. Maintaining

so

and

The case of n :p 2 k is similar.

ON THE DISTRIBUTION OF COMPARISONS IN SORTING ALGORITHMS 767

such a function led naturally to the adversary described in the next paragraph.

Initially P is an antichain and h(x) = 1 for each x ~ P. We want to cont inue
to have h(C) < 1 for all (maximal) chains as we sort. When we answer a :b

we halve h(a) and h(b); therefore if h(a) = 2 -k we know a has been in k com-
parisons. (For our analysis we can assume a and b are incomparable.) Fur ther
we look at P< and P>, the two possible resulting posets, and choose the one

with the lightest (i.e. least h(C)) chain th rough a and b. The following results
shows that if h(C) < 1 for all C in the poset before a compar ison then it will

be true in the poser resulting from the adversary 's resolution of the comparison.

LEMMA 2: For every sorting algorithm any comparison a:b can be answered
so that in the resulting poset h(C) <- 1, Jor each chain C, prorided that h(C) <- 1
held Jor each C be/bre the comparison.

PROOF. The basis of an inductive argument is clear. Consider the maximal chains

above and below a and b before the comparison. Let U,, be the maximum cost
of a chain with a as it least element with the cost of a, h(a), subtracted out.

Let Do be the maximum cost of a chain with a as it greatest element, again with
h(a) subtracted out. Suppose that there must be a chain C with h(C) > 1 ; then
it tollows that

However, by hypothesis

(U ,+h(a)+D,)+(Ub+h(b)+Db) <- 2. •

Clearly when sorting is completed the poset P is a total order, a single chain,

and therefore h(P) -< 1, Alternatively, ~xee2 -ctx) _< 1 where x was involved in
c(x) comparisons. This is an interesting inequality. As an aside we note it provides

still another constructive adversary-based proof of the lower bound for sorting,

due to the following observation,

LEMMA 3 : E x e p 2 -c(x) ~ 1 implies ~,xepC(X) = f2(nlogn) Jbr the total order P.

PRoov. A familiar result relating the geometric and arithmetic means (e.g. [11])

states

(YlY2." y,,)l/,, < (Yl +. . - + y,)/n.

Assume n = 2 k. We know

(2k-c(x~)+... + 2kc(x"))/n <-- 1

(2k-c(xd2k-~t~)...2k-c(x")) ~/" <-- 1

nlog2 n --< ~c(x) .

768 DANA RICHARDS AND PRAVIN VAIDYA

This inequality alone states that not many elements x can have small c(x)'s
but does not disallow a few. It gives us the following result which slightly improves
the result in section 2.

THEOREM 2: Every sorting algorithm Jbr some input will involve n - n~/2 + 1 keys
in at least e log 2 n comparisons, e. > O.

PROOF. Note that only one c(x) could be 1 since it contributes ½ to the sum
~ 2 -ctx). Similarly only three c(x)'s could be 2 with a net contribution of 3.

Clearly the maximum number of keys with c(x) < e log2 n is achieved if each such
key has c(x) = e tog2 n - 1. The number of such keys is bounded by 2 ~'t°g~'-~- t

which gives the result. •
It is easy to show that if h(P) < n -~ was always true for the total order then

the uniform sorting conjecture would follow. However the following result shows
that this is not nearly true.

LEMMA 4: For some sorting algorithms we can have

h(P) >- 1/3+O(2 -"/2)

Jor the total order P.

PROOF. Consider the following algorithm which begins by sorting a subset S
of 3 keys. After some processing we will increase the size of S to 5 sorted keys,
then 7, and so on. For each size of S we compare all the keys not in S to the
second smallest key of S, and, in all cases, the second smallest key wins the
comparison. This is consistent with Lemma 2. After that we increase the size
of S by two by sorting the smallest key of S with two keys not in S. Iterate
until S contains all n keys.

Because of the regularity of the algorithm we can easily predict the final values

of h(x) and sum them. The important point is that h(x) remains comparatively
large for the largest, the third largest, and so on. For n odd we get

h(P) = (1 - 2 x -")/3 + 2 2 -n + 2 3-" + 2(3 -.1/2.

We get a similar expression for n even. •
It is possible to generalize this approach to take into account how the com-

parisons were resolved. 1 In particular, let w(x) be the number of comparisons x
"won" and l(x) be the number of losses; c (x) = w(x)+l(x). Of course
~w(x) = ~l(x). Define h,(x) = rW<X~(1-r) "x), 0 < r < 1, so that h.5(x) = h(x). A
result analogous to Lemma 2 can be devised, i.e. we can maintain h,(C) < 1 for
all C. However, it is not clear how to take advantage of this formulation.

1~ Personal communication from M. Pleszkoch, 1985.

ON THE DISTRIBUTION OF COMPARISONS IN SORTING ALGORITHMS

4. Binary tree based adversaries.

769

We can derive the result in Theorem 2 by yet another approach. We present
an adversary that responds in an automatic fashion based on a binary tree data
structure it maintains. Since a sorting algorithm could take advantage of the
adversary's determinism it is surprising that we can get stronger results than with
the poset-based adversary. This adversary was invented independently and used
to prove (unrelated) results about searching with preprocessing [3] 2

The data structure is an infinite binary tree with tokens distributed over the
nodes. It is convenient to regard the infinite subtrees without any tokens as
being pruned away. The tokens, labeled 1, 2 n, are identified with the keys.
Initially all n tokens are at the root. Let n(i) be the node containing token i.
To answer a comparison about the ith and j th keys the adversary locates the
tokens labeled i and j in the tree. It maintains the following invariant:

If n(i) is an ancestor of n(j) then the corresponding keys are incomparable.
Otherwise, if n(i) is to the left of n(j), relative to their least common ancestor,
then the ith key is less than jth key.

The adversary does not move any tokens in response to a comparison that is
already answered by the invariant. If, say, n(i) is a proper ancestor of n(j) then
the token j is not moved and the token i is moved to the right (left) son of
n(i) if n(j) is in its left (right) subtree. If n(i) - n(j) then, arbitrarily, token i
is moved to its left son and token j is moved to its right son.

As the sorting process progresses the tokens move down away from the root.
It is clear that the invariant is maintained. Therefore, when sorting is done no
token can be the ancestor of another. The following claim is easily verified:
No node has tokens in one of its subtrees while having no tokens in its other
subtree. We can now give an alternative proof of Theorem 2.

PROOV (Theorem 2): From the above claim we see that the infinite tree when
pruned after sorting gives a full binary tree with n - 1 internal nodes and n
leaves, each leaf with a single token on it. Let depth(t,) be the depth of a node r in
the tree. Since a token only moves during a comparison we have c(i) >_ depth(n (i)),
where c(i) is the number of comparisons the ith key is involed in, as before.

It is known (e.g., [6], problem 2.3.4.5-3) that if I1, t2 I, are the leaves of a
full binary tree then ~2 -depth(l') = 1. Therefore it follows that ~ 2 -~i) _< 1. The

remainder of the proof follows as before. I I
It is bothersome, due to the definition of the adversary, that c(i) can be much

greater than depth(n(i)). One attempt to correct for this has a token move after

2~ This was treated in more depth in the unpublished manuscript ~'Insert-Search Tradeoff," by
N. Lynch, 1978.

770 DANA RICHARDS AND PRAVIN VAIDYA

every comparison involving it. Unfortunately this causes more difficulties than it
resolves. However, we can go further than the above proof.

Let v be a node in the tree and L(v) and R(v) be the set of tokens in its left and
right subtrees, respectively. For a set of tokens T, let C(T) be the sum of the com-
parison counts for the keys associated with those tokens, i.e. C(T) = Y'i~TC(i).
The following theorem states that while the resulting binary tree can be skewed,
with perhaps only a few tokens in the left subtree, the distribution of com-
parisons is not as skewed. One, of many possible, corollaries is given to show
how to apply the result. Let S(n) be the number of comparisons needed to sort
n keys.

THEOREM 3: For any node v in the binary tree after the sorting process

C(L(v)) >- Ig(v)l + 2S([L(v)]) + depth(v)lL(v)[

as well as with L and R interchanyed.

PROOF. Every comparison for a key now in the left subtree of v involved a
second key that is now in the right subtree, the left subtree, or elsewhere in the
tree. Every key now in the right subtree got there by a comparison of the first
type. This gives the [R(v)l term. Only keys in the left subtree are relevant in
sorting those keys, hence the second term. Note that each such comparison is
double-counted in the summation. Finally, the total number of comparisons
involving the tokens before they arrived at node v is bounded by the third
term. II

COROLLARY 1: I f one key was involved in only 2 comparisons then another key
was involved in at least n - 2 comparisons.

PROOF. Let the ith key be involved in just two comparisons, i.e. c(i) = 2. By
the theorem n(i) cannot be a son of the root, so n(i) is at depth 2. The sibling
node of n(i) must contain a token i'. Otherwise the theorem would be violated
at their mutual parent v. Hence, applying the theorem at the root, c(i')+c(i) >
> (n - 2) + 2 + 0 , since S(2) = i. I I

5. Up~r ~ u ~ s .

We begin by showing that there exists an algorithm that can effectively avoid
using at least one of its keys in many comparisons. The algorithm sorts by
repeatedly inserting a new key into a previously sorted sublist S. Initially S
is created by sorting three keys, obviously not using more than two comparisons
per key. The algorithm finds the least-used key x in S and compares the new key z
with the keys w and y which are just less and just greater than x in S,

ON THE DISTRIBUTION OF COMPARISONS IN SORTING ALGORITHMS 771

respectively. If w < z < y then compare z with x and stop, otherwise avoid x.
Note that w or y may not exist creating simpler special cases.

THEOREM 4: There exists a sortin9 algorithm that involves at least one key in
at most three comparisons Jbr ever), input.

PROOV. A simple inductive proof can be based on the above algorithm. By
hypothesis x has been in at most 3 comparisons. If z is compared against x
then z assumes x's role in the hypothesis. []

We have been able to show that even more keys can be "shy". The following
lemma for f (n) keys, f (n) an arbitrary function, is the principal result.

LEMMA 5: There exists a sorting algorithm which will invoh,e at least f (n) > 1

keys in 0(1o9 f (n)) comparisons.

PRoov. We will show that some J(n) keys will be in at most Cl log2f(n) com-
parisons, cl a constant, for the following insertion sorting algorithm. As above,
the algorithm, after some preprocessing, has a sorted subtist S. On each iteration
it picks a previously unused key and inserts it into S. We identify S with its

total order and speak of a key being (immediately) above or below another.
It is convenient to add the two keys oc and - ~c to S.

First sort 2f(n) keys. (The case n < 2f(n) follows directly from the following
discussion.) Recall there exists a sorting algorithm for m keys that does not
involve any key in more than c2 Iog2 m comparisons, c2 a constant [1]. Using
that algorithm during preprocessing we will not use more than c2 log2f (n)+c2
comparisons per key. This provides the basis, with c~ > 2cz, for our inductive
assertion: After each insertion there are f (n) keys in S, each involved in at most
c~ log2f(n) comparisons and, further, they are separated in S by other keys.

The algorithm identifies these keys, x~ < x2 < ... < xj.~,~, and for each xi it
knows w,i and y~, the keys immediately below and above x~, respectively. Note
that 3'~ may be wi+l. A binary search with an unused key is conducted over
the w's and y's. This requires at most log2f{n) + 2 comparisons. If the final interval
contains an xi then do a final comparison with it, and the new key replaces xi
in the inductive assertion. Otherwise proceed with the insertion leaving the x's
unaffected. We see the inductive assertion continues to hold. []

The next theorem follows directly from the previous result by setting
f (n) = n ~/~'', where cl is the constant in the above proof.

THEOREM 5: There exists a sorting algorithm that will Jor every input involve
at most n - n ~/c keys in more than elog2n comparisons, where c is a constant and
e > 0 .

772 DANA RICHARDS AND PRAVIN VAIDYA

6. Known algorithms.

In this section we discuss "natural algorithms", i.e. algorithms in the literature,
as opposed to those in the previous section which were designed to defeat the
conjecture. All the natural algorithms we have analyzed have satisfied the
conjecture. We will restrict our attention to the simplest presentation of an
algorithm since further elaborations were not intended to defeat the conjecture.
For any definitions not given here see [7].

The class of adjacent-interchange algorithms clearly satisfy the conjecture. In
the same spirit, Quicksort supports the conjecture for those inputs which give rise
to the O(n 2) worst-case performance. Mergesort is trivially seen to satisfy the
conjecture, since each key cannot be avoided on each phase and there are
s2(log n) phases. Similarly for Shellsort, when there are Q(log n) phases.

The proofs for Heapsort and Binary-Insertion Sort are less obvious. With
Binary-Insertion Sort it seems some keys might be ignored. A generalization
of this theorem applies to the Ford-Johnson algorithm.

THEOREM 6: Binary-Insertion Sort satisfies the conjecture.

PROOF. A basis for an induction proof is trivial. Assume after 2 k - - 1 keys have
been inserted, those keys have been in at least k - 1 comparisons each. Now as we
insert the next 2 k elements, each time "target" one of the original 2 k - 1 keys
(and one twice) to be compared. Hence all the original elements will have been in
k comparisons, and each of the new keys have been in k comparisons too. •

Heapsort is an algorithm in which it can be hard to keep track of each key.
It is important to initially arrange the keys on the tree of the heap so that each
key travels a distance equal to the height of the tree cumulatively over the
"heapify" and sorting stages.

THEOREM 7: Heapsort satisfies the conjecture.

PROOF. We sketch the proof for n = 2 k - 1. Start with the keys in sorted order
(so that, for example, the smallest is at the root and the largest are at the leaves)
and then heapify. The effect is that the 2 k- 1 _ 1 smallest keys have gone from the
internal nodes to the leaves while the 2 k- 1 largest keys have moved up, one level
at a time, to the internal nodes. (Actually two of the large keys did not move
but their subsequent behaviors are the same as the other large keys.)

The theorem follows from the following observations: During the first 2 k- 1
steps, i.e. deletemax's, in every case the key brought to the root percolates back
to a leaf. An induction proof can be built on the fact that after these 2 k- ~
steps the resulting heap is identical to the original heap constructed in the case
of n = 2 k- 1_ 1, and therefore the observation above can be applied again. It
follows that every key is at some point at a leaf node and does not decrease

ON THE DISTRIBUTION OF COMPARISONS IN SORTING ALGORITHMS 773

its depth, by one level, without being in a comparison. The proof for other
values of n is similar. •

Finally we consider the class of non-adaptive sorting algorithms and sorting
networks; these satisfy the conjecture. Recall that Lemma 1 states that we can
force any particular key to be involved in f2(logn) comparisons. Since these
algorithms are unresponsive they must have that property for every key.

7. Conclusions.

Theorems 2 and 5 show that there is only a small gap between the upper and
lower bounds. Further, we conjecture that the constant in Theorem 5 can be
much smaller than the constructive proof might indicate. In fact it may be 1.

Recall that this work was motivated by considering keys with varying costs and
therefore the comparisons they are involved in are not unit-cost operations.
Results about the distribution of comparisons in sorting algorithms can be used
to obtain lower bounds. For example, the result that every sorting algorithm
for some input must involve n - n~/2 + 1 keys in at least e log2 n comparisons leads
to lower bounds for various natural distributions of costs of key comparisons. In
particular, if the keys are numbered 1 to n and the cost of comparing i and j
is i + j then we obtain an Q(n21ogn) lower bound on the worst case cost of
any sorting algorithm.

The results of section 5 do not immediately imply that desirable sorting
algorithms exist; i.e., algorithms which reduce total cost by avoiding expensive
keys. For example, if there is just one expensive key Theorem 4 does not imply
that it can be in just a few comparisons; Lemma 1 actually states the opposite.
It is an open question whether desirable algorithms exist. A conjectured result is
that if there is a large enough subset of relatively expensive keys then some of
those could be "shy" (as in Theorem 5). The best algorithm, to our knowledge,
seems to be the sorting network serialization discussed above [1] since it
minimizes the possible deficit from the expensive keys.

Another interesting avenue in this line of research would be to determine the
"'profiles" of sorting algorithms. The profile is the sequence of n integers: how
often the most compared key is used how often the least compared
key is used. What we have presented are two-step characterizations of these
profiles. More complete characterizations should be investigated, possibly using
Theorem 3.

R E F E R E N C E S

1. M. Ajtai, J. Komlos, and E. Szemeredi, An O(nloyn)sorting network, Proc. 15th ACM Syrup.
Theory of Computation, 1983, pp. 19.

2. M. Atallah and S. Kosaraju, An adversary-based lower bound for sorting, Info. Proc. Let.,
13, 1981, pp. 55-57.

774 DANA RICHARDS AND PRAVIN VAIDYA

3. A. Borodin, L. J. Guibas, N. A. Lynch, and A. C. Yao, Efficient searching using partial ordering,
Info. Proc. Let., 12, 1981, pp. 71-75.

4. F. Fussenegger and H. Gabow, A counting approach to lower bounds for selection problems, J.
ACM, 26, t979, pp. 227-238.

5. J. R. Griggs, Poset measure and saturated partitions, Studies in Applied Math., 66, 1982, pp. 91-93.
6. D. E. Knuth, The Art of Computer Programming." Fundamental Algorithms, Addison-Wesley, 1968.
7. D. E. Knuth, The Art of Computer Programming: Sorting and Searching, Addison-Wesley, 1973.
8. D. S. Richards, Problems in Sorting and Graph Algorithms, UIUCDCS-R-84-1186, Ph.D. Thesis,

University of Illinois, 1984.
9. D. S. Richards, Sorting with expensive comparands, International Journal of Computer Mathe-

mathics, 16, 1984, pp. 23-45.
10. M. Saks, The information theoretic bound Jbr problems on ordered sets and graphs, in Graphs and

Orders, I. Rival (ed.), Reidel, 1985, 137-168.
11. H. Wilf, Some examples of combinatorial averaging, Am. Math. Monthly, 92, 1985, pp. 250-261.

