
Reducing t h e parallel complexity of certain l inear programming problems
(extended abstract)

Pravin M. Vaidya,
Department of Computer Science,

University of Illinois a t Urbana-Champaign,
Urbana, IL 61801.

Abstract. We study the parallel complexity of solving
linear programming problems in the context of interior
point methods. Let n and m respectively denote the
number of variables and the number of constraints in
the given problem. We give an algorithm that solves
linear programming problems in O((~ n n) ' / ~ (l ~ g m) ~ L)
time using O (M (n) m / n + n3) processors. (M (n) is the
number of operations for multiplying two n X n
matrices.) This gives an improvement in the parallel
running time for n = o (m) . A typical case where
n = o (m) is the dual of the uncapacitated transporta-
tion problem. Our algorithm solves the uncapacitated
transportation problem in O((VE)'/4 (10gV)~ (log V7))
time using O(V3) processors where V (E) is the number
of nodes (edges) and 7 is the largest magnitude of an
edge cost or a demand at a node. As a byproduct we
also obtain a better parallel algorithm for the assign-
ment problem for graphs of moderate density.

1. Introduct ion
We study the parallel complexity of the linear pro-

gramming problem

max cTz

s.t. Ax > b

where z ER", A ERmXn, and b ERm. We assume that
the polytope P = { z : Az 2 b } is full dimensional and
bounded and that all input numbers are integers. Note
that since the polytope is bounded, m >n. Let L be
defined as

L = log2(det,,) + logz(c c + b b) + log2(m +n)

where detmax denotes the largest absolute value of the
determinant of any square submatrix of A.

We shall study the parallelizability of linear pro-
gramming in the context of interior point methods. We
shall assume a CRCW PRAM model of computation.
All the known interior point algorithms for solving
linear programming problems are iterative algorithms
[2,10,13,15,18]; each iteration typically consists of com-
putations such as linear system solve, matrix inversion,

matrix-vector multiplications, and the computations in
an iteration are easily implemented in polylogarithmic
time given an adequate (polynomial) number of proces-
sors. (In other words, the computations during an
iteration can be performed in NC.) So the parallel
complexity of such algorithms is essentially determined
by the number of iterations. In all implementations of
interior point algorithms for linear programming it has
been observed that the number of iterations grows very
slowly with m and n i.e. roughly speaking the number
of iterations grow like O(logmL) [1,8,9,16]. On the
other hand the best known bound on the number of
iterations is O(<L)[15]. So it is interesting to study
by how much the number of iterations can be reduced.
In this paper we shall give an interior point algorithm
that solves the above linear programming problem in
O((~ n n) ' / ~ L) iterations; the computations during an
iteration can be performed in O((10gm)~) time using

O (v + n 3) processors where M (n) is the number

of operations for multiplying two n x n matrices [5,11].
Thus we obtain an improvement in the number itera-
tions and a faster parallel algorithm for n = o (m) .

A typical case where n = o (m) is the dual of the
uncapacitated transportation problem [see 141; here
n = V and m = E where V and E are the number of
nodes and the number of edges in the given network
respectively. Our algorithm solves the uncapacitated
transportation problem in O((VE)'/4(10g V)310g(V7))
time using O(V3) processors where 7 is the largest mag-
nitude of an edge cost or a demand at a node. As a
byproduct we also obtain a faster parallel algorithm for
the assignment problem (which is a special case of the
transportation problem) for graphs of moderate density.
The previously best known algorithm for the assign-
ment problem runs in
O(min { E'/', V 2 l 3 } (10gV)~log(Vy)) time and uses
O(V3) processors [SI; so we obtain an improvement for

In section 2 we shall give an overview and in sec-
tion 3 we shall describe our algorithm. If we think of
the problem {max c T~ I Az 2 b } as the dual problem
then the corresponding primal problem is
{ m i n - b T r I - A T r = c , r > O } , 7rERm. In section 4

E = 0 (V"3).

CH292!5-6/90/0000/0583$01 .OO 0 1990 IEEE
583

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on March 29,2024 at 04:25:31 UTC from IEEE Xplore. Restrictions apply.

we shall discuss how to construct in parallel a solution
to the primal problem from a solution to the dual prob-
lem obtained by our algorithm.

2. An overview

Let P be the polytope defined as

P = { z : A z > b } .

For a function f(z) we shall let Vf(z) and V2f(z)
respectively denote the gradient and the Hessian of f (2)

evaluated a t z. Also, let X (f , z) be defined as

w , 2) = Vf(z)TV2f (.)-'or (2) ,

4 f) = "{W, .) 1.
and let A(!) be defined as

Z E P

Since our algorithm will use Newton's method for
minimizing some suitable strictly convex function f (2)

at every iteration, we shall briefly review a variant of
Newton's Method for minimizing f (2).

Newton's method for minimizing a strictly con-
vex function f(z). At each step in the method we
move from the current point z to a point where f(z)
has a strictly smaller value. During a step we reset z as

z + z - tB(z)-'Vf(z).
where B (z) is a good approximation to V2f(z) and t is
a suitable choice of step length. Variants and details
may be found in [12].

A generic path following algorithm. A path
following algorithm for solving the linear programming
problem { m a c Tz I A z 2 b } may be designed as fol-
lows. Let g(z) be a continuously twice differentiable
function that is strictly convex over the interior of P
and that tends to cc as we approach any of the boun-
daries of P . (g(z) could be thought as a smooth convex
barrier function.) Then by the Implicit Function
Theorem [3,4] it follows that the equation

Vdz) = P c , P E R
implicitly defines z as function of 8, and that this
implicit function is a continuously differentiable func-
tion of p. As P is changed continuously from -co to
00, z=z(@) sweeps a continuous trajectory in the

polytope P ; the two limit points of this trajectory are
the points that minimize and maximize the linear func-
tion e T z over P . The path following algorithm follows
the trajectory Vg(x) = t e to the point that maximizes
e Tz over P using (some variant of) Newton's method.

Typically, the path following algorithm generates a
strictly increasing sequence of parameters
@,P', . . . 9 , Pk . . . and a sequence of points
zo,zl, . . . ,zk, . . . such that zk is a good approxima-
tion to wk where wk satisfies the condition

Vg(wk) = / ? k c .
Note that w k is the minimizer of the function g k (z)
over the polytope P where

g k (z) = g(z) -

During the kth iteration we move from zk-' to zk using
some variant of Newton's method for minimizing g k (z) .
The algorithm halts when ,B becomes suitably large,
typically 2°(L). The number of iterations depends on
the rate a t which the P's can be increased.

How fast can the P's be increased. The
sequence of P's has to be chosen such that zk can be
computed from zk-' in a few (O(1)) steps of Newton's
method; this limits the rate a t which the P's can be
increased. In other words pk-' and Pk have to be such
that and zk-' are close enough to wk so that
Newton's method for minimizing gk (2) converges
rapidly. If the quantity X (g k , zk-') is small then

,z) = g k (d) - g k (z k - 1)
- q g k 1 k - 1

2

and Newton's method converges quickly. Let us assume
that if X (g k , z k - ') satisfies the condition

A b k , z k - l) I %I,
then zk is computable from zk-' in 0 (1) steps of
Newton's method. (Here 6(g) is a suitably small param-
eter dependent on 9 .)

We can set up a condition in terms of A(g) and
6(g) which tells us how fast the parameter /3 can be
increased. For simplicity let us assume that

. With a little bit of manipulation it is
easily seen that

x k - l -Wk-l -

584

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on March 29,2024 at 04:25:31 UTC from IEEE Xplore. Restrictions apply.

pk-pk-1

So if we choose pk such that

then X(gk,w"-') will be guaranteed to be at most 6(g)
and we will be in the domain of rapid convergence for
Newton's method. Rewriting the above condition we
get that

Note that if p k violates condition (2.1) there would no
apriori guarantee that Newton's method for minimizing
gk(z) would converge rapidly.

A p a t h of analyt ic centers. In the path follow-
ing algorithms for linear programming studied thus far
[13,15,17,18] the function g has been the logarithmic
barrier function for P . The logarithmic barrier func-
tion for P , denoted +(z), is given by

+(z) =-Eln(aTz--b i)

where a: denotes the ith row of A . Specifically, these
algorithms follow the path of analytic centers [13,15,17]
defined as

i=l

V ~ (Z) = P c , P E R . .

For the logarithmic barrier +(z), A(+) could be as large
as m and the best value known for a(+) is O(1). So if
(2.1) is to be satisfied and Pk is to be made as large as

1 possible then P k (1+-)Pk-', and as a result the

bound obtained on the number of iterations is
O(m1/2L) 1151.

A p a t h of volumetric centers. Another possible
choice for the function g in a path following algorithm

is the determinant barrier -ln(det(V2+(z))) where

mm

1
2

det(.) denotes the determinant. The determinant bar-
rier is strictly convex over P and has been used in I191
to obtain better algorithms for convex programming. A
path following algorithm based on the determinant bar-
rier would follow the path of volumetric centers defined
by

1
2

V(-ln(det(Vd(z)))) = P c , P E R .

(The volumetric center is discussed in [19].) Even
though the parameter A in this case is at most n, the
parameter 6 is small, about -[l9]. m1/2 In order to

make pk large without violating (2.1), we have to let

p k = (1 + - y m1,4 l12)pk-1, and we get a bound of

O(m1/4n1/2L) iterations. This bound is better than the
O (6 L) bound for the path of analytic centers for
m > n 2 but worse for m I n 2 .

A p a t h of hybrid centers. The parameter 6 has
a smaller value in the case of the determinant barrier
than in the case of the logarithmic barrier because the
determinant barrier has loosely speaking a higher
degree of non-linearity than the logarithmic barrier. So
we add a small multiple of the logarithmic barrier to
the determinant barrier to obtain a hybrid barrier; this
damps out some of the non-linearity in the determinant
and considerably improves the value of 6 at the cost of
a modest increase in the value of A. Let $(z) be the
hybrid barrier function defined as

1

1

$(z) = -In(1 det(V2+(z))) +
2 m

and let the path of hybrid centers be defined as

v$(z) = b e , P E R .
In our algorithm g will be the function $ and we will
follow the path of hybrid centers. It can be shown that

A(t,b)<Zn and 6($)=fl(-). So we can choose p k as

This

leads to a bound of O((mn)'l4 L) iterations for an algo-
rithm that follows the path of hybrid centers.

n1/2

m1/2

)pk-' and still satisfy (2.1). 1
p k 25 (l+-

(mn)'/4

585

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on March 29,2024 at 04:25:31 UTC from IEEE Xplore. Restrictions apply.

The question of finding a barrier function with a
better combination of A and 6 remains open.

3. An algorithm that follows a path of hybrid
centers

We shall briefly describe an algorithm for solving
linear programming problems that follows a path of
hybrid centers. Let +(z) be the hybrid barrier function
defined as

$(z) = -In(1 det(V2d(z))) + +4(z)
2

m

i=l
where 4(z) = - ln(aTz - b ;) , det(.) denotes the

determinant, and a? denotes the ith row of A . Let
lClk(z) be defined as

+k(z) = +(z) - 2n ln(cTz -pk) .
and let wk denote the minimizer of + k (z) over Pk where

P k = { z : A z > b , c T s > l j k)

We will call wk the hybrid center of P k . (Note that the
definition of $k is slightly different from the one for g k
in section 2; the two definitions correspond to different
parametrizations of the same trajectory.) Let p""" be
the maximum value of the objective function c T z over
the feasible region (polytope) P = { z : A z 2 b } .

The algorithm will generate a strictly increasing
sequence of parameters p", p', . . . , D k , . . . whose limit
is pmax, together with a sequence of points
zo,zl, . . . , z k , . * . such that zk is a good approxima-
tion to w k ; specifically,

for some suitably small constant E <1. We start with a
p" such that p"ax-po<20(L), and a good approxima-
tion zo to WO. The issue of obtaining a suitable starting
point is addressed in [15,18]. Let B k (z) be defined as

c c n ala: 2n m

B k (z) = c("i(z)+-) +
i=l m (aTz-bi) ' (c T z - p k) '

u:v"(z)-'ui
where oi(z) = l < i < m and

(uTz - b i) 2
'

. .

tion to V2t,bk(z) and is used in our algorithm for minim-
izing +'(z) during the kth iteration. Specifically, we
have that

V [ER", t T B k (z) t 5 t T P + ' (z) E 5 5 t T B k (z) t .
Let CY < 1 be a small positive constant.

At the beginning of the kth iteration we have a
parameter pk-', a point zk-' such that cTzk-' 2 p"'
and

During the kth iteration we execute the following steps
in sequence.

. .
2. Compute zk from zk-l by executing 0(1) steps of

Newton's method for minimizing + k (~) as follows.
2 t z k - 1 ;

Z k - 2 .

For j=1 to 610g2(l/a~) do
2 t 2 - 0.2Bk(z)-'v+k(z);

Bounding the number of iterations. The algo-
rithm halts when c T z k - p k falls below 2-7L where
r>l is some positive constant, and an exact optimum
is then found as described in [15]. (The computing of
an exact optimum involves a projection computation
and is easily performed in NC.) If for some constant 0
we can show that

c T Z k -pk 2 o(p""-pk)
then it will follow that

which will mean that the algorithm halts in
O((mn)'I4L) iterations. We shall sketch how the
desired lower bound on c T z k - p k is obtained. VIlk(z)
may be expressed as

586

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on March 29,2024 at 04:25:31 UTC from IEEE Xplore. Restrictions apply.

n ai
+ 2 n e

C T Z -pk
- V ? p (Z) = E (" i (2) + -1 -

i=l m aTz-bi

and since V $ J k (w k) = 0,

+ 2n = o . m n ai
,E (o i (wk) +-I -

e T W k - p k i= l m aTwk-bi

Taking the dot product of both sides of the above equa-

tion with z -wk, noting that C u i (z) = n , and

adding 4n to both sides we get that

m

i = l

= 4 n .
m aFz-b, e T z -pk

e T W k - p k
+ 2n i-1 E(oi(wk)+-)- m a?wk-bi

Then with a little bit of manipulation it is seen that
pmaX-pk 2 2 (c T w k - p k) , and since zk and wk are

close, The desired bound on
c T ~ k - p k then follows. At this point it is worth noting
that the method for bounding the number of iterations
is similar to the one for the path of analytic centers in
[IS]; we obtain a better bound because in our case it
suffices to put a weight of 2 n on the objective function
plane rather than a weight of m that is used in [15].

The rate a t which the P's are increased guarantees
that we stay in the domain of rapid convergence for
Newton's method, and 0(1) steps of Newton's method
for minimizing t+!~~(z) suffice to move from zk-' to z k .
Details will appear in the full paper; the techniques are
an extension of the ones in [lS]. Also, it is straightfor-
ward to show that the quantities o i (z) , B k (z) , Bk(z) - ' ,
and Vt+!~~(z) can be evaluated in O((10gm)~) time using

a y M (n) m + n3) processors; thus a step of Newton's

method and an iteration may be excuted in O ((l ~ g m) ~)
time using the same number of processors.

4. Solving the primal problem

e T ~ k - p k E e T ~ k - p k .

We shall discuss how to solve the primal problem

min -bT7r

s.t. - A T r = e

where rERm, bERm, AERmXn, and eER". The
dual of the above problem is the problem

max c T z

s.t. A z Lb
whose solution has been discussed in the previous sec-
tions. To solve the primal problem we first solve the
dual using the algorithm in section 3, and then con-
struct an almost optimal feasible solution to the primal
using the output of the algorithm. The output of the
algorithm in section 3 is a point ? such that

n -
m

where 6; = u i (i) + -, /3=2°(L) and v is a very small

error (vector) term. For simplicity we shall assume that
v =O; the procedure described below can be modified in
a straightforward manner to handle the (small) error
term v.

The form of the gradient v $ (z) leads to a natural
correspondence between primal variables and dual
slacks for points on the trajectory of hybrid centers,
and using this correspondence we will construct an
almost optimal solution ii to the primal problem from
2. Such a correspondence was first given for the trajec-
tory of analytic centers in [2]. Define ii as

, 1 5 i 5 m. Then we have that
wi

p(a:2 - b i)
5; = -

- A T E = e .

Thus ii is feasible for the primal problem since E ; LO,
1 5 i S m . It can be shown that if rapt is an optimal
solution to the primal problem then

4n
bT(7rap' -?) < 7.

- P
Thus ? is almost optimal, and an optimal solution to
the primal problem may be constructed by a projection
computation as described in [15].

Note that if the error v mentioned above is not
zero then ii has a small component outside the affine
space { r : - A T 7 r = c } ; specifically,

587

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on March 29,2024 at 04:25:31 UTC from IEEE Xplore. Restrictions apply.

1
- ~ ~ i i = c + Tv. We can construct a small pertur-

bation U such that %+U is in this affine space; in par-

ticular choosing U = -;-A(ATA)-'v suffices. If v is

adequately small (its norm 2-0(L)) then %+U is feasible
for the primal problem and is almost optimal. The
entire process of constructing ++U from 5 may be car-

ried out in O((10gm)~) time using O(= + n3)

processors.

S. References

P
1

P

I. Adler, N. K. Karmarkar, M. G. C. Resende, and
G. Veiga, An implementation of Karmarkar's algo-
rithm for linear programming, Mathematical Pro-
gramming, Vol. 44, 1989.

D. A. Bayer and J. C. Lagarias, The non-linear
geometry of linear programming I. Affine and Pro-
jective scaling trajectories, Trans. Amer. Math.
Soc., to appear.

G. A. Bliss, Lectures on the calculus of variations,
Phoenix Science Series, The University of Chicago
Press, Chicago 37, 1946.

S. Bochner, and W. T Martin, Several Complex
variables, Princeton University Press, Princeton,
1948.

D. Coppersmith and S. Winograd, Matrix multipli-
cation via arithmetic progressions, Proc. 19th
Annual ACM Symp. Theory of Computing, (May
1987) 1-6.

A. Goldberg, S. Plotkin, D. Shmoys, and E. Tar-
dos, Interior-point methods in parallel computa-
tion, Proc. 30th Annual IEEE Symp. on Founda-
tions of Computer Science, 1989, pp. 350-355.

M. Grotschel, L. Lovasz, and A. Schrijver,
Geometric algorithms and combinatorial optimiza-
tion, Springer-Verlag Berlin Heidelberg, 1988.

N. K. Karmarkar and K. G. Ramakrishnan,
Further developments in the new polynomial time
algorithm for linear programming, Talk a t the

Programming, Boston, Aug. 1985.

(9) N. K. Karmarkar and K. G . Ramakrishnan, Imple-
mentation and computational results of
Karmarkar's algorithm for linear programming
using an iterative method for computing projec-
tions, Technical Memorandum, Mathematical Sci-
ences Center, AT&T Bell Laboratories, Murray
Hill, NJ, Nov. 1989.

(10) N. Karmarkar, A new polynomial time algorithm
for linear programming, Combinatorica, Vol. 4,

(11) V. Pan and J. Reif, Efficient parallel solution of
linear systems, Proc. 17th Annual ACM Sympo-
sium on Theory of Computing, 1985, pp. 143-
152.

(12) M. Minoux, Mathematical Programming: Theory
and Algorithms, John Wiley & Sons Ltd., New
York, 1986.

(13) N. Meggido, Progress in Mathematical Program-
ming: Interior Point and related methods (Ed. N.
Meggido), Springer-Verlag New York Inc., 1989.

(14) C. H. Papadimitriou and K. Steiglitz, Combina-
torial optimization: Algorithms and complexity,
Prentice-Hall Inc., Englewood Cliffs, NJ, 1982.

(15) J. Renegar, A polynomial-time algorithm based on
Newton's method for linear programming,
Mathematical Programming, 40, (1988), 59-93.

(16) D. Shanno and C. Monma, Computational experi-
ence with the primal-dual method, Talk a t
ORSA/TIMS conference, Washington D.C., April
1988..IP 7.

(17) Gy. Sonnevend, An analytical center for
polyhedrons and new classes of global algorithms
for linear (smooth, convex) functions, Technical
Memorandum, Dept. of Numerical Analysis, Insti-
tute of Mathematics, Eotvos University, Budapest,
Hungary.

(18) P. M. Vaidya, An algorithm for linear program-
ming that requires O(((m+n)n2+(m+n)' .5n)L)
arithmetic operations, Proceedings 19th Annual

1984, pp. 373-395.

12th International Symposium Mathematical ACM Symposium Theory of Computing, (May

588

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on March 29,2024 at 04:25:31 UTC from IEEE Xplore. Restrictions apply.

1987), pp. 29-38; also to appear in Mathematical
Programming.

(19) P. M. Vaidya, A new algorithm for minimizing
convex functions over convex sets, Proceedings
30th Annual IEEE Symposium Foundations of
Computer Science, 1989, pp. 338-343.

589

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on March 29,2024 at 04:25:31 UTC from IEEE Xplore. Restrictions apply.

