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Abstract. We study the parallel complexity of solving 
linear programming problems in the context of interior 
point methods. Let n and m respectively denote the 
number of variables and the number of constraints in 
the given problem. We give an algorithm that solves 
linear programming problems in O( ( ~ n n ) ' / ~  ( l ~ g m ) ~  L )  
time using O ( M ( n ) m / n  + n3) processors. ( M ( n )  is the 
number of operations for multiplying two n X n  
matrices.) This gives an improvement in the parallel 
running time for n = o ( m ) .  A typical case where 
n = o ( m )  is the dual of the uncapacitated transporta- 
tion problem. Our algorithm solves the uncapacitated 
transportation problem in O( ( VE)'/4 (10gV)~ (log V7)) 
time using O( V3) processors where V ( E )  is the number 
of nodes (edges) and 7 is the largest magnitude of an 
edge cost or a demand at  a node. As a byproduct we 
also obtain a better parallel algorithm for the assign- 
ment problem for graphs of moderate density. 

1. Introduct ion 
We study the parallel complexity of the linear pro- 

gramming problem 

max cTz  

s.t. Ax > b  

where z ER", A ERmXn, and b ERm. We assume that 
the polytope P = { z : Az 2 b } is full dimensional and 
bounded and that all input numbers are integers. Note 
that since the polytope is bounded, m >n. Let L be 
defined as 

L = log2(det,,) + logz( c c + b  b )  + log2( m +n) 

where detmax denotes the largest absolute value of the 
determinant of any square submatrix of A. 

We shall study the parallelizability of linear pro- 
gramming in the context of interior point methods. We 
shall assume a CRCW PRAM model of computation. 
All the known interior point algorithms for solving 
linear programming problems are iterative algorithms 
[2,10,13,15,18]; each iteration typically consists of com- 
putations such as linear system solve, matrix inversion, 

matrix-vector multiplications, and the computations in 
an iteration are easily implemented in polylogarithmic 
time given an adequate (polynomial) number of proces- 
sors. (In other words, the computations during an 
iteration can be performed in NC.) So the parallel 
complexity of such algorithms is essentially determined 
by the number of iterations. In all implementations of 
interior point algorithms for linear programming it has 
been observed that the number of iterations grows very 
slowly with m and n i.e. roughly speaking the number 
of iterations grow like O(logmL) [1,8,9,16]. On the 
other hand the best known bound on the number of 
iterations is O(<L)[15]. So it is interesting to study 
by how much the number of iterations can be reduced. 
In this paper we shall give an interior point algorithm 
that solves the above linear programming problem in 
O( ( ~ n n ) ' / ~ L )  iterations; the computations during an 
iteration can be performed in O((10gm)~) time using 

O ( v + n 3 )  processors where M ( n )  is the number 

of operations for multiplying two n x n  matrices [5,11]. 
Thus we obtain an improvement in the number itera- 
tions and a faster parallel algorithm for n = o ( m ) .  

A typical case where n = o ( m )  is the dual of the 
uncapacitated transportation problem [see 141; here 
n = V and m = E  where V and E are the number of 
nodes and the number of edges in the given network 
respectively. Our algorithm solves the uncapacitated 
transportation problem in O( ( VE)'/4(10g V)310g( V7) )  
time using O( V3) processors where 7 is the largest mag- 
nitude of an edge cost or a demand at  a node. As a 
byproduct we also obtain a faster parallel algorithm for 
the assignment problem (which is a special case of the 
transportation problem) for graphs of moderate density. 
The previously best known algorithm for the assign- 
ment problem runs in 
O( min { E'/', V 2 l 3 }  (10gV)~log( Vy)) time and uses 
O( V3) processors [SI; so we obtain an improvement for 

In section 2 we shall give an overview and in sec- 
tion 3 we shall describe our algorithm. If we think of 
the problem {max c T~ I Az 2 b } as the dual problem 
then the corresponding primal problem is 
{ m i n - b T r I - A T r = c , r > O } ,  7rERm. In section 4 

E = 0 (V"3). 
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we shall discuss how to construct in parallel a solution 
to the primal problem from a solution to the dual prob- 
lem obtained by our algorithm. 

2. An overview 

Let P be the polytope defined as 

P = { z : A z > b } .  

For a function f(z) we shall let Vf(z) and V2f(z) 
respectively denote the gradient and the Hessian of f (2) 

evaluated a t  z. Also, let X ( f ,  z) be defined as 

w , 2) = Vf(z)TV2f (.)-'or (2) , 

4 f )  = "{W, .) 1. 
and let A(!) be defined as 

Z E P  

Since our algorithm will use Newton's method for 
minimizing some suitable strictly convex function f (2) 

at  every iteration, we shall briefly review a variant of 
Newton's Method for minimizing f (2). 

Newton's method for minimizing a strictly con- 
vex function f(z). At each step in the method we 
move from the current point z to a point where f(z) 
has a strictly smaller value. During a step we reset z as 

z + z - tB(z)-'Vf(z). 
where B ( z )  is a good approximation to V2f(z) and t is 
a suitable choice of step length. Variants and details 
may be found in [12]. 

A generic path following algorithm. A path 
following algorithm for solving the linear programming 
problem { m a  c Tz I A z  2 b } may be designed as fol- 
lows. Let g(z) be a continuously twice differentiable 
function that is strictly convex over the interior of P 
and that tends to cc as we approach any of the boun- 
daries of P .  (g(z)  could be thought as a smooth convex 
barrier function.) Then by the Implicit Function 
Theorem [3,4] it follows that the equation 

Vdz) = P c  , P E R  
implicitly defines z as function of 8, and that this 
implicit function is a continuously differentiable func- 
tion of p. As P is changed continuously from -co to 
00, z=z(@) sweeps a continuous trajectory in the 

polytope P ;  the two limit points of this trajectory are 
the points that minimize and maximize the linear func- 
tion e T z  over P .  The path following algorithm follows 
the trajectory Vg(x)  = t e to the point that maximizes 
e Tz over P using (some variant of) Newton's method. 

Typically, the path following algorithm generates a 
strictly increasing sequence of parameters 
@,P', . . . 9 ,  Pk . . . and a sequence of points 
zo,zl, . . . ,zk, . . . such that zk  is a good approxima- 
tion to wk where wk satisfies the condition 

Vg(wk) = / ? k c  . 
Note that w k  is the minimizer of the function g k ( z )  
over the polytope P where 

g k ( z )  = g(z) - 

During the kth iteration we move from zk-' to zk using 
some variant of Newton's method for minimizing g k ( z ) .  
The algorithm halts when ,B becomes suitably large, 
typically 2°(L).  The number of iterations depends on 
the rate a t  which the P's can be increased. 

How fast can the P's be increased. The 
sequence of P's has to be chosen such that zk can be 
computed from zk-' in a few (O(1)) steps of Newton's 
method; this limits the rate a t  which the P's can be 
increased. In other words pk-' and Pk have to be such 
that and zk-' are close enough to wk so that 
Newton's method for minimizing gk (2) converges 
rapidly. If the quantity X ( g k ,  zk-') is small then 

,z ) = g k ( d )  - g k ( z k - 1 )  
- q g k  1 k - 1  

2 

and Newton's method converges quickly. Let us assume 
that if X ( g k , z k - ' )  satisfies the condition 

A b k ,  z k - l )  I %I, 
then zk  is computable from zk-' in 0 ( 1 )  steps of 
Newton's method. (Here 6(g) is a suitably small param- 
eter dependent on 9 . )  

We can set up a condition in terms of A(g) and 
6(g) which tells us how fast the parameter /3 can be 
increased. For simplicity let us assume that 

. With a little bit of manipulation it is 
easily seen that 

x k - l  -Wk-l - 
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pk-pk-1 

So if we choose pk such that 

then X(gk,w"-') will be guaranteed to be at most 6(g) 
and we will be in the domain of rapid convergence for 
Newton's method. Rewriting the above condition we 
get that 

Note that if p k  violates condition (2.1) there would no 
apriori guarantee that Newton's method for minimizing 
gk(z )  would converge rapidly. 

A p a t h  of analyt ic  centers. In the path follow- 
ing algorithms for linear programming studied thus far 
[13,15,17,18] the function g has been the logarithmic 
barrier function for P .  The logarithmic barrier func- 
tion for P ,  denoted +(z), is given by 

+(z) =-Eln(aTz--b i )  

where a: denotes the ith row of A .  Specifically, these 
algorithms follow the path of analytic centers [13,15,17] 
defined as 

i=l 

V ~ ( Z )  = P c ,  P E R . .  

For the logarithmic barrier +(z), A(+) could be as large 
as m and the best value known for a(+) is O(1). So if 
(2.1) is to be satisfied and Pk is to be made as large as 

1 possible then P k  (1+-)Pk-', and as a result the 

bound obtained on the number of iterations is 
O(m1/2L) 1151. 

A p a t h  of volumetric centers. Another possible 
choice for the function g in a path following algorithm 

is the determinant barrier -ln(det(V2+(z))) where 

mm 

1 
2 

det(.) denotes the determinant. The determinant bar- 
rier is strictly convex over P and has been used in I191 
to obtain better algorithms for convex programming. A 
path following algorithm based on the determinant bar- 
rier would follow the path of volumetric centers defined 
by 

1 
2 

V( -ln(det(Vd(z)))) = P c , P E R  . 

(The volumetric center is discussed in [19].) Even 
though the parameter A in this case is at most n,  the 
parameter 6 is small, about -[l9]. m1/2 In order to 

make pk  large without violating (2.1), we have to let 

p k  = ( 1 + - y  m1,4 l12)pk-1, and we get a bound of 

O(m1/4n1/2L) iterations. This bound is better than the 
O ( 6 L )  bound for the path of analytic centers for 
m > n 2  but worse for m I n 2 .  

A p a t h  of hybrid centers. The parameter 6 has 
a smaller value in the case of the determinant barrier 
than in the case of the logarithmic barrier because the 
determinant barrier has loosely speaking a higher 
degree of non-linearity than the logarithmic barrier. So 
we add a small multiple of the logarithmic barrier to 
the determinant barrier to obtain a hybrid barrier; this 
damps out some of the non-linearity in the determinant 
and considerably improves the value of 6 at  the cost of 
a modest increase in the value of A. Let $(z) be the 
hybrid barrier function defined as 

1 

1 

$(z) = -In( 1 det(V2+(z))) + 
2 m 

and let the path of hybrid centers be defined as 

v$(z) = b e ,  P E R  . 
In our algorithm g will be the function $ and we will 
follow the path of hybrid centers. It can be shown that 

A(t,b)<Zn and 6($)=fl(-). So we can choose p k  as 

This 

leads to a bound of O( ( mn)'l4 L) iterations for an algo- 
rithm that follows the path of hybrid centers. 

n1/2 

m1/2 

)pk-' and still satisfy (2.1). 1 
p k  25 (l+- 

(mn)'/4 
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The question of finding a barrier function with a 
better combination of A and 6 remains open. 

3. An algorithm that follows a path of hybrid 
centers 

We shall briefly describe an algorithm for solving 
linear programming problems that follows a path of 
hybrid centers. Let +(z) be the hybrid barrier function 
defined as 

$(z) = -In( 1 det(V2d(z))) + +4(z) 
2 

m 

i=l 
where 4(z) = - ln(aTz - b ; ) ,  det(.) denotes the 

determinant, and a? denotes the ith row of A .  Let 
lClk(z) be defined as 

+k(z )  = +(z) - 2n ln(cTz -pk) . 
and let wk denote the minimizer of + k ( z )  over Pk where 

P k  = { z : A z > b ,  c T s > l j k )  

We will call wk the hybrid center of P k .  (Note that the 
definition of $k is slightly different from the one for g k  
in section 2; the two definitions correspond to different 
parametrizations of the same trajectory.) Let p""" be 
the maximum value of the objective function c T z  over 
the feasible region (polytope) P = { z : A z  2 b } . 

The algorithm will generate a strictly increasing 
sequence of parameters p", p', . . . , D k ,  . . . whose limit 
is pmax, together with a sequence of points 
zo,zl, . . . , z k ,  . * . such that zk  is a good approxima- 
tion to w k ;  specifically, 

for some suitably small constant E <1. We start with a 
p" such that p"ax-po<20(L), and a good approxima- 
tion zo to WO. The issue of obtaining a suitable starting 
point is addressed in [15,18]. Let B k ( z )  be defined as 

c c  n ala: 2n m 

B k ( z )  = c("i(z)+-) + 
i=l m (aTz-bi) '  ( c T z - p k ) '  

u:v"(z)-'ui 
where oi(z) = l < i < m  and 

(uTz - b i ) 2  
' 

. .  

tion to V2t,bk(z) and is used in our algorithm for minim- 
izing +'(z) during the kth iteration. Specifically, we 
have that 

V [ER", t T B k ( z ) t  5 t T P + ' ( z ) E  5 5 t T B k ( z ) t  . 
Let CY < 1 be a small positive constant. 

At the beginning of the kth iteration we have a 
parameter pk-', a point zk-' such that cTzk-' 2 p"' 
and 

During the kth iteration we execute the following steps 
in sequence. 

. .  
2. Compute zk from zk-l  by executing 0(1) steps of 

Newton's method for minimizing + k ( ~ )  as follows. 
2 t z k - 1 ;  

Z k  - 2 .  

For j=1 to 610g2(l/a~) do 
2 t 2 - 0.2Bk(z)-'v+k(z); 

Bounding the number of iterations. The algo- 
rithm halts when c T z k  - p k  falls below 2-7L where 
r>l  is some positive constant, and an exact optimum 
is then found as described in [15]. (The computing of 
an exact optimum involves a projection computation 
and is easily performed in NC.) If for some constant 0 
we can show that 

c T Z k  -pk 2 o(p""-pk) 
then it will follow that 

which will mean that the algorithm halts in 
O( (mn)'I4L) iterations. We shall sketch how the 
desired lower bound on c T z k  - p k  is obtained. VIlk(z) 
may be expressed as 
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n ai 
+ 2 n e  

C T Z  -pk 
- V ? p ( Z )  = E (" i (2)  + -1 - 

i=l m aTz-bi 

and since V $ J k ( w k )  = 0, 

+ 2n = o .  m n ai 
,E (o i (wk)  +-I - 

e T W k  - p k  i= l  m aTwk-bi 

Taking the dot product of both sides of the above equa- 

tion with z -wk,  noting that C u i ( z )  = n , and 

adding 4n  to both sides we get that 

m 

i = l  

= 4 n .  
m aFz-b,  e T z  -pk 

e T W k  - p k  
+ 2n  i-1 E(oi(wk)+-)-  m a?wk-bi 

Then with a little bit of manipulation it is seen that 
pmaX-pk 2 2 ( c T w k - p k ) ,  and since zk and wk are 

close, The desired bound on 
c T ~ k  - p k  then follows. At this point it is worth noting 
that the method for bounding the number of iterations 
is similar to the one for the path of analytic centers in 
[IS]; we obtain a better bound because in our case it 
suffices to put a weight of 2 n  on the objective function 
plane rather than a weight of m that is used in [15]. 

The rate a t  which the P's are increased guarantees 
that we stay in the domain of rapid convergence for 
Newton's method, and 0(1) steps of Newton's method 
for minimizing t+!~~(z) suffice to move from zk-' to z k .  
Details will appear in the full paper; the techniques are 
an extension of the ones in [lS]. Also, it is straightfor- 
ward to show that the quantities o i ( z ) ,  B k ( z ) ,  Bk(z ) - ' ,  
and Vt+!~~(z) can be evaluated in O((10gm)~) time using 

a y  M ( n ) m  + n3) processors; thus a step of Newton's 

method and an iteration may be excuted in O ( ( l ~ g m ) ~ )  
time using the same number of processors. 

4. Solving the primal problem 

e T ~ k  - p k  E e T ~ k  - p k  . 

We shall discuss how to solve the primal problem 

min -bT7r  

s.t. - A T r  = e 

where rERm, bERm, AERmXn, and eER". The 
dual of the above problem is the problem 

max c T z  

s.t. A z  Lb 
whose solution has been discussed in the previous sec- 
tions. To solve the primal problem we first solve the 
dual using the algorithm in section 3, and then con- 
struct an almost optimal feasible solution to the primal 
using the output of the algorithm. The output of the 
algorithm in section 3 is a point ? such that 

n -  
m 

where 6; = u i ( i )  + -, /3=2°(L) and v is a very small 

error (vector) term. For simplicity we shall assume that 
v =O; the procedure described below can be modified in 
a straightforward manner to handle the (small) error 
term v. 

The form of the gradient v $ ( z )  leads to a natural 
correspondence between primal variables and dual 
slacks for points on the trajectory of hybrid centers, 
and using this correspondence we will construct an 
almost optimal solution ii to the primal problem from 
2.  Such a correspondence was first given for the trajec- 
tory of analytic centers in [2]. Define ii as 

, 1 5  i 5 m. Then we have that 
wi 

p(a:2 - b i )  
5; = - 

- A T E  = e .  

Thus ii is feasible for the primal problem since E ;  LO, 
1 5  i S m .  It can be shown that if rapt is an optimal 
solution to the primal problem then 

4n 
bT(7rap' -?) < 7. 

- P  
Thus ? is almost optimal, and an optimal solution to 
the primal problem may be constructed by a projection 
computation as described in [15]. 

Note that if the error v mentioned above is not 
zero then ii has a small component outside the affine 
space { r : - A T 7 r = c } ;  specifically, 
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1 
- ~ ~ i i  = c + Tv. We can construct a small pertur- 

bation U such that %+U is in this affine space; in par- 

ticular choosing U = -;-A(ATA)-'v suffices. If v is 

adequately small (its norm 2-0(L)) then %+U is feasible 
for the primal problem and is almost optimal. The 
entire process of constructing ++U from 5 may be car- 

ried out in O((10gm)~) time using O(= + n3) 

processors. 
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