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MINIMUM SPANNING TREES IN k-DIMENSIONAL SPACE*

PRAVIN M. VAIDYA’

Abstract. We study the problem of finding a minimum spanning tree in the complete graph on a set V
of n points in k-dimensional space. The points are the vertices of this graph and the weight of an edge
between two points is the distance between the points under some L,j metric. We give an O(e-kn log n)
algorithm for finding an approximate minimum spanning tree in such a graph; the weight of the approximate
minimum spanning tree is guaranteed to be at most (1 + e) times the weight of a minimum spanning tree.

We also present an algorithm to find a minimum spanning tree in the complete graph on V. Under the
assumption that V consists of n random points, independently and uniformly distributed in the unit k-cube
[0, 1] ’, the expected running time of this minimum spanning tree algorithm is shown to be O(na(cn, n))
where c is a constant dependent on k and a is the inverse Ackermann function.

Key words, minimum spanning trees, approximation algorithms

AMS(MOS) subject classifications. 68Q20, 68Q25, 68U05

1. Introduction. Given an undirected graph with a weight assigned to each edge,
a spanning tree is a connected acyclic subgraph, and a minimum spanning tree (MST)
is a spanning tree whose edges have a minimum total weight among all spanning trees.
The classical algorithms for finding an MST were given by Dijkstra [4], Kruskal [9],
Prim 10], and Sollin ]. It is well known that for a graph on n vertices, an MST may
be found in O(n2) time. For a graph with m edges and n vertices, it was shown by
Yao 15] that an MST may be found in O(m log log n) time. Further results on MST’s
may be found in [6], [8].

We study the problem of finding an MST in the complete graph on a given set V
of n points in k-dimensional space. The points are the vertices of this graph and the
weight of an edge between any two points is the distance between the points under
some distance metric Lq. Each point x is given as a vector (x, x2,’’’, Xk). The Lq,
q- 1, 2,..’, c, distance between any two points x and y is given by (k=
(Note that the L distance is given by maxi Ixi-yil.) We assume that the dimension
k and the distance metric Lq are fixed (so distance is to be always interpeted as Lq
distance).

The problem of finding an MST on a set of points in k-dimensional space differs
from the problem of finding an MST in a general weighted undirected graph in two
respects. First, the input consists only of kn numbers, the edges and the edge weights
being implicitly defined. Second, in many applications of MST on points in space,
like clustering, pattern recognition [5], 17], and other geometric and statistical applica-
tions, a spanning tree whose weight is close to the weight of an MST would serve just
as well. So it is useful and interesting to investigate if the geometric nature of the
problem can be exploited to obtain fast algorithms for finding a spanning tree on
points in space whose weight is minimum or close to minimum.

Shamos and Hoey were the first to utilize the geometric nature of this problem,
and in [12] they give an O(n log n) algorithm for n points in the plane (k 2) with
Euclidian metric. In [16] Yao gives algorithms which construct an MST in time
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MINIMUM SPANNING TREES 573

O(n2-2-’h+"(log n) 1-2-’+’’) for any fixed k _-_ 3, and distance metrics Lq, q 1, 2, co. In
[7], O(n(log n)k-), 0--<2, algorithms are given for fixed k->2 and L, L distance
metrics. An algorithm for finding a spanning tree, with weight at most (1 + e) times
minimum, for k 3 and L2 distance metric is given in [2] but the .running time is
dependent on the ratio of the maximum to the minimum distance between any two
points. In [14], an O(n(log n)k+ e -k-)) algorithm is given for finding a spanning tree
with weight at most (1 + e) times minimum, for e > 0, and fixed k and fixed metric Lq.

We give two algorithms for fixed dimension k and fixed metric Lq. The first
algorithm, given in 3, runs in O(e-kn log n) time and finds an approximate minimum
spanning tree whose weight is at most (1 + e) times the weight of an MST. The second
algorithm, presented in 4.1, always finds an MST. For n random points, independently
and uniformly distributed in the unit k-cube [0, 1]k, the expected running time of the
second algorithm is shown to be O(no(n, n)), where c is a constant dependent on k
and a is the inverse Ackermann function defined in [13]. As a grows extremely slowly
with n, the expected running time of the second algorithm is almost linear. We note
that the constants in the running times of both the algorithms depend on the dimension
k. The probabilistic analysis of the second algorithm is given in 4.2.

As far as the model of computation is concerned, we assume that all access,
arithmetic and comparison operations require constant time. We also assume that some
form of indirect addressing is available so that the process of distributing n numbers
into rn buckets can be carried out in O(rn + n) time.

Without loss of generality we assumethat all the n points in the given set V are
located in the unit k-cube [0, 1] k. We let d(p, p’) denote the distance between two
points p and p’, and we let WMSV denote the weight (length) ofan MST in the complete
graph on V. A box is defined to be the product Jl x J2 x... x Jk of k intervals, or
alternatively the set of those points x (x, x2,’", Xk) such that xi is in interval Ji,

1, 2,. ., k. A box is cubical if and only if all the k intervals defining it have the
same length, and the size of a cubical box is the length of each of the k intervals
defining it. For a set of points S, we let dmax(S) denote the greatest distance between
two points in S. For sets of points S and S, we let dmin(S, $2) and dmax(S, S:),
respectively, denote the minimum and maximum distance between a point in $I and
a point in S.

2. A brief overview. In the approximate minimum spanning tree algorithm we first
extract a sparse graph G (V, E) from the given set of points V, and then find an
MST in G using a standard procedure [6], [7], [11]. There are O(e-kn) edges in G
and there is a spanning tree in G of weight at most (1 + e) WMSV. We obtain the graph
G as follows. Using a co|lection of grids the region containing the given points is
divided into cubical boxes, each grid partitioning the region into boxes of identical
size. In each box b, we select a representative point from among the points in V that
are located in box b. An edge between the representative in box b and the representative
in box b’ is included in G if and only if b and b’ are of identical dimensions and the
minimum distance between b and b’ is below a certain threshold. In addition to edges
between representatives, G contains an adequate number of short edges (of length <
eWMsT/3n) suitably chosen to ensure that G is connected. Now suppose V is
partitioned into V1 and V2, and (p, P2), P V, P2 V2, is the unique edge in an MST
from V to V2. Then either there are points p V, p V2, such that (p., p&) is in G,
p’l and p are representative points in boxes, and d(p, p)-< (1 + e)d(p, P2), or among
the short edges, in G there is a path from p to P2 of length at most eWMsv/tl2. This
guarantees the existence of a good spanning tree in G.
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574 PRAV|N M. VAIDYA

The procedure to extract G may be implemented in O(e-kn log n) time, and as
G contains O(e-kn) edges, an MST in G may be found in O(e-kn log n) time using
a standard procedure [6], [8], 11], 15]. So the overall running time of the approximate
minimum spanning tree algorithm is O(e-kn log n).

In the exact minimum spanning tree algorithm we first extract a graph G’= V, E’)
from the given set of points V such that G’ always contains a spanning tree of weight
WMST- The graph G’ is sparse with high probability, and can be extracted in O(IE’I)
time. We then try to sort the edges in G’ by weight, in O(IE’I) (linear) time, by running
a fixed number of passes of radix (bucket) sort 11], with radix 2 r2n 1. If this approach
fails to sort the edges in G’, we sort them in O(IE’lloglE’l) time using a standard
algorithm [11]. Once a sorted list of edges in G’ is available, utilizing Kruskal’s
algorithm an MST in G’ may be obtained in O(na(IE’l, n)) time where a is the inverse
Ackermann function defined in [13]. Suppose the given set V consists of n random
points, independently and uniformly distributed in the unit k-cube [0, 1] k. Then the
probability that G’ has more than cn edges, where c is a constant dependent on the
dimension k, is o(1/n2). Also, the probability that a fixed number of passes of radix
sort, with radix 2 rlg2n], fail to sort the edges is o(1/n2). Then it follows that the
expected running time of the minimum spanning tree algorithm is O(na(cn, n)).

G’ is obtained in a manner similar to G above. Using a collection of grids the
unit k-cube [0, 1]k is divided into cubical boxes, each grid partitioning the unit k-cube
into boxes of identical size. Let b, b2, be boxes of identical dimensions such that the
minimum distance between b and b2 is above a certain threshold and below another
threshold. We test an easy to compute condition such that (i) if the condition is false,
then none of the. edges between a point in b f3 V and a point in b CI V can be included
in an MST in the complete graph on V, whereas (ii) if the condition is true, then there
is an empty region which does not contain a point in V and whose volume is greater
than or equal to the volume of bt or b2. We include every edge between a point in
b f3 V and a point in ba CI V in G’ if and only if this condition holds. In addition, we
also include most of the short edges (length < c’n -/k, c’ a constant) in G’. We thereby
ensure that G’ always contains an MST in the complete graph on V. If the number of
edges in G’ exceeds cn, then either there is a large region in the unit k-cube which
does not contain a point in V or there is some region in the unit k-cube that contains
a concentration of points in V, and under the assumption that the points in V are
independently and uniformly distributed in the unit k-cube both these events occur
with very low probability.

3. Approximate minimum spanning tree algorithm. The algorithm to find an
approximate MST in the complete graph on the given set V of n points consists of
two stages: in the first stage we extract a sparse graph G (V, E) from the given set
V of points, and in the second stage we use a standard procedure [6], [7], 11] to find
a minimum spanning tree in the graph G. The graph G (V, E) has the following
properties.

(1) G contains a spanning tree whose weight (length) is at most (l+e+l/n)
times WMs-r.

(2) IEI O(e-n).
We shall require a few definitions before we can describe the algorithm to extract

G. Let go be a smallest cube enclosing all the n points in V, and let Lo be the length
of a side of go. Let g be a grid that partitions go into 2k identical cubical boxes, and
let t= [(log2 (24([e-])2k2n2))]. Let Bi denote the set of those boxes (cubes) in gi

which contain a point in V, and let B (.J 6k/q=o B. Let Li c, [e-] -2 Lo, where c,
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MINIMUM SPANNING TREES 575

for Lq metric, q 1, 2, 3,- ., . We let r(b) denote the representative point in box b.
We now give an algorithm to extract the graph G (V, E) from the set of points V.

ALGORITHM SPARSE-GRAPH.
1. For each box b B, pick a representative point r(b) from among the points

in b f’l V, and let R (r(b)" b B}, for 1,. , 5. We pick representatives
so that R

_
R2 c: R

_ .._ R.
2. Let X =LI a,___ Xi where

X=((r(b), r(b2))" be B,, b2 B,, dm(b, b2)--< L,}.
3. Let Y=((p, r(b))" p b, b B.
4. Let E=XUY.
end Sparse-Graph

The edges in X connect representatives in boxes b, bE, in B such that dm(b, bE)
lies between two thresholds L and L/3. The edges in Y are small in length compared
to WMs-r and they ensure that G (V, E) is connected.

We need some additional definitions before we can show that G has the desired
properties. Let Z denote the set of all the edges in the complete graph on V, and let

Z {(p, P2)" P e bl, p2 e bE, b e B,, b2 B,, dmin(bl, bE) L,/3}.
The following two lemmas follow directly from the definitions.

LEMMA 1. For 1_-< i_-<tS, ifbeB, bEB, and dmi(b, bE)>-L/3 then dm(b)
dma(b2)<-(e/E)dmin(b, b2) and dmax(b, b2)--< (1 +e)dmn(b, b2).

LEMMA 2. Zo G Z g’

_
Zi -" G Z8

_
Z.

LEMMA 3. For 1 <-i 8, if (p, P2)e (Zi-Zi-) then p, P2, are located in boxes
b, b2, which satisfy b Bi, b2 B, and L/3 -< dmi,(b, b2) <- L.

Proof. Suppose p, P2 are located in boxes b, b2, in B, respectively. Since
(p,p2)Zl, dmi.(b, b2)>- Li/3. Let b e B_I, be B_, and let bl

_
b, b2_ b. Since

(Pt, p2)e (Zi-Z_), we have dm,(b, b)<= L,_/3. Then

dm,(b, b)<-__dm,(b, b)+ dmax(b;)/2+ dmax(b)/2
L_,/3 + k/q2-(i-)Lo
Li.

[’]

We now show that G (V, E) contains a spanning tree whose weight is at most
(1 + e + l/n)WST. Let T be an MST in the complete graph on V. We shall give a
function f: T--> 2 such that the graph (V, [.Jrf(e)) is connected and the sum of the
weights of the edges in U ee’rf(e) is at most (1 + e + 1/n)WMS-r. The function f(e) is
defined as follows.

(1) If ee T and eE, then we letf(e)={e}.
(2) Suppose e((T-E)f’)(Z-Z)). Let e=(p,p2), and let b, b2 be the boxes

in B which contain p, P2, respectively. Then f(e)={(p,r(b)), r(b ), r( b) ),
(r(b:),p2)} and f(e) (YU X). The length of an edge in Y is at most eWMsr/3n
and d(r(b), r(b2)) <= eWus/3n2, so the sum of the lengths of the edges in f(e) is at
most eWs/n2.

(3) Let e e ((T-E)f’l (Z-Z_)), <- 8, and let b, b2 be the boxes in B which
contain the endpoints p, P2, of e. Then by Lemma 3, (r(b), r(b)) X, and hence
(r(b),r(b2))E, We let f(e)={(r(b),r(b2))}. By Lemma 1, d r(b ), r( b:) <-_

(l+e) d(p,,p2).
It remains to be shown that the graph (V, U:rf(e)) is connected. Consider a

partition of V into V and V2. Let e (p, P2), where p V and P2 V2, be the unique
edge in T from V to V2.
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576 PRAVIN M. VAIDYA

(1) Suppose e (Z-Z). Then f(e) defines a path from Pl to p2.

(2) Suppose e (Zi Zi_), 6, and boxes bl, b2 in Bi contain p, P2, respectively.
Then we must have that (b ( V)

_
V1 and (b2 V)

_
V2. This is seen as follows. Assume

that there is a point p’ in bl V2. As dmin(b,b2)>dma(bl), replacing (p,p2) by
(p, p’) in T gives a spanning tree on V of smaller length which cannot happen. So
(bl V)_ V. It follows similarly that (b2CI V)_ V2. Then the edge (r(b),r(b2))
connects V and V2.

We now show that E contains a linear number of edges. We note that R
_
R2_... _ Ri _..._ R. If there is an edge in Xi between two points in R_I then the

same edge is also present in Xi_, and hence every edge in X-X_ is incident on a
representative point in the set of representatives R-Ri_. There are at most
O((2Cae-) k) edges in X incident on any point in V, and so we get

6 i-1 6

IxI--2 [xi- [’-J xl+lXol--o((2co-’)" Y (IRiI-IR,-,I))
i=1 j=O i=1

O((2ce-’)lRl)= O((2coe-’)kn).
Then since ]Y[<=n, and E=XU Y we get that IE] O((2coe-t)kn) O(e-kn) for
fixed k.

To obtain a fast implementation of Algorithm Sparse-Graph we construct a data
structure which is best described as a tree-of-boxes.

(1) The root of the tree is the box go, and the children of each box b in B are
those boxes in Bi+ which are sub-boxes of b.

(2) The leaf boxes are the boxes in B, and each leaf box contains a list of points
in V that are in the box.

(3) The boxes at each level i, i.e., the boxes in B are linked together in a doubly
linked list.

(4) From each box b in B there are pointers to (i) its father in Bi_, (ii) its sons
in Bi+, (iii) each box b’ in B satisfying dmin(b b’)<-Li, and (iv) the leflmost leaf box
in the subtree rooted at box b.

The tree-of-boxes has O(log n) levels and at most n boxes per level. For each box
b Bi, there are at most O((2cae-) k) boxes b’ in Bi such that drain(b, b’) Li. So the
tree-of-boxes requires O((2cae-)kn log n) storage, and can be constructed in
O((2coe-)kn log n) time by starting from the root and proceeding towards the leaves
level by level.

Once the tree-of-boxes is available, the representatives in boxes may be chosen in
time proportional to IBI- O(n log n). For boxes b and bz, we can find points p b,
pz b2, such that d(p, P2) dmn(b, b) in O(k) time. Utilizing the tree-of-boxes, each
of the edge sets X can be extracted in O(k(2cae-)kn) time, ar.d so G may be extracted
in O(k(2ce-)kn log n) time.

Once we have the sparse graph G (V, E) one of the standard algorithms in [6],
[8], 11 ], 15] may be used to find an MST in G. We thus have an algorithm for finding
an approximate minimum spanning tree on a set V of n points in k-dimensional space.
The running time is O(e-kn log n) for fixed k, and the weight of the approximate
minimum spanning tree obtained is at most (1 + e) times the weight of a minimum
spanning tree.

4. MST algorithm with almost linear expected running time.
4.1. Description. Like the approximate minimum spanning tree algorithm in the

previous section, the algorithm to find a minimum spanning tree in the complete graph
on V also consists of two stages. In the first stage we extract a graph G’= (V, E’)
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MINIMUM SPANNING TREES 577

which is guaranteed to contain a spanning tree of weight WMSV, and in the second
stage we find a minimum spanning tree in G’. Unlike the graph G in the previous
section, G’ is not necessarily sparse; however, G’ is sparse with high probability under
the assumption that the given points are uniformly and independently distributed in
[0, ].

Let go be the unit k-cube [0, 1 ]k and let gi be a grid that divides go into 2ki identical
cubical boxes. Let B be the set of all the boxes in g (rather than just the set of
occupied boxes) and let B B Define 6 to be [log2n/k] Let L Ce2-i where=0

Ce 12.1k/q for tq metric, q 1, 2, 3,. ., c. Let Z be the set of all the edges in the
complete graph on V and let the edge sets Zi be defined as in 3. We note that Lemma
2 and Lemma 3 in 3 are still valid under these definitions.

For a box b, let/x (b) denote the singleton set containing the center of box b. For
a pair of boxes bl, b2, we define 7r(b, b, i) to be the union of those boxes b which
are such that

(i) bj
(ii) dmax(b./,/x(b)) < dmi,,(b, b2)- dma,,(b, i(b)), and
(iii) dm(b.i,/x(b2)) < dmi,(b, b2)- dm(b2,/x(b)).
We now give an algorithm to extract G’.

ALGORITHM PROBABLY-SPARSE-GRAPH.
C where1. Let C=t.Ji=

C, {(p, p:)" p b, p:z b:, b B, b. Bi, L,/3

<-- drnin(b,, b) =< L,, 7r(b,, b2, i) f/V= }.
2. Let D= {(p,, P:z)" P b,, p2 b2, b, B, b. B, dmi,(b,, b.) <- L}.
3. Let E’=CI,.JD.
end Probably-Sparse-Graph

We have to show that G’= (V, E’) contains a spanning tree which is an MST in
the complete graph on V. Let T be an MST in the complete graph on V and let
e (p, p) be an edge in T.

(1) Suppose e(Z-Z). We have that (Z-Z) D and so eD.
(2) Suppose e (Zi- Zi_), -< 6, and p, p are located in boxes b, b in B. We

shall show that 7r(b, b2, i) is nonempty, so the condition 7r(b, b2, i)("l V-- is not
vacuously true. By Lemma 3 in 3, L/3 -< dmin(b, b2) Li. Let/3 be the center of the
line segment joi.ning the centers of boxes b and b2. It is easily shown that there is a
cubical box b of size 2--) centered at /3, such that dmax(/,/.c(b))<
dm,(b,, b)- dm(b,, ix(b,)), and dma(/, z(b)) < dmn(b,, b)- dmx(b,/z(b2)). As /
must contain a box in Bi we conclude that 7r(b, b, i) is nonempty. Since (p, p) T,
for each point p in V either d (p, p) >_- d (p, P2) or d (p, p2) >_- d (p, p2), and it then
follows that 7r(b, b, i) V must be empty. So e C.
Hence T C(.JD E’.

Algorithm Probably-Sparse-Graph can be implemented in O(]E’]+ k(2ce)n) time
by using a tree-of-boxes, similar to the one in 3 for the boxes in B. We first build a
skeleton for the tree-of-boxes. The skeleton differs from the tree-of-boxes described in
3 in that there are no points in V stored at any of the leaf boxes. The skeleton has

O(n) boxes and can be constructed in O((2Ce)n) time. Once the skeleton is available,
we utilize a radix (bucket) sort 11 ], with radix 2 (= O(n)), to distribute the n points
into the 2 leaf boxes in O(n) time. We note that at this stage the tree-of-boxes contains
all the boxes in B irrespective of whether they do or do not contain a point in V. Then
in O(n) time we delete from the tree-of-boxes all those boxes which do not contain a
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578 PRAVIN M. VAIDYA

point in V, and add to each occupied box b a pointer to the leftmost leafbox in the
subtree rooted at box b.

Utilizing the tree-of-boxes, we can check whether zr(bl, b2, i) V is empty in
O(k(2Ce)k) time if bl Bi, b2 Bi, and dmin(bi, b2) Li. The edge set C may be extracted
in O([CI + k(2ce)kn) time, for 1," ", 3, and D may be obtained in O([D[ + k(2ce)kn)
time. So Algorithm Probably-Sparse-Graph may be implemented in O([E’[+ k(2ce)kn)
time.

We shall now describe a procedure for finding an MST in the graph G’= (V, E’).
We first try to sort the edges in G’ by employing a fixed number of passes of radix
(bucket). sort [11], with radix (base) 2 [lg2n]o If this approach fails to sort the edges in
G’ we sort them in O(IE’[log IE’[) time using a standard algorithm [11]. After sorting
the edges, we utilize Kruskal’s algorithm [9], [11] to find an MST in G’. The edges
are examined in increasing order of weight and an edge is chosen if and only if it does
not form a cycle with the previously chosen edges. The chosen edges form an MST in
G’. Once a sorted list of edges is available, Kruskal’s algorithm may be implemented
in O([E’[a([E’[, n)) time, where a is the inverse Ackermann function defined in [13].

The algorithm to find an MST in the complete graph on V consists of first extracting
G’ using Algorithm Probably-Sparse-Graph, and then finding an MST in G’ using the
above described procedure. Let us assume that V consists of n random points,
independently and uniformly distributed in the unit k-cube [0, 1] k. Let PL be the
probability that for some i, 0 <-i <= kn7-1, the lengths of at least two edges lie in the
interval [in -7, (i+ 1)n-7]. In 4.2 we show that PL is 0(1/n). So the probability that
eight passes of radix sort, with radix 2 [lgEn], fail to sort the edges in G’ is o(1/n2)
thus the probability that the edges in G’ cannot be sorted in O([E’[) time, using a fixed
number of passes of radix sort, is o(1/n). Let Pc, be the probability that G’ contains
more than cn edges, where c is a constant dependent on the dimension k. In 4.2 we
also show that Pc, is o(1/n). So with probability 1- o(1/n2), the running time of the
algorithm to find an MST in the complete graph on V is O(cna(cn, n)+k(2ce)kn).
The worst case running time of the same algorithm is O(n2 log n). Therefore, when k
is fixed, the expected running time of the algorithm for finding an MST in the complete
graph on V is O(na (cn, n)).

4.2. Probabilistic analysis. We assume that the set V consists of n random points
which are independently and uniformly distributed in the unit k-cube [0, 1] k. Let P/
be the probability that for some i, 0 <- <-_ kn7-1, the lengths of at least two edges lie
in the interval it/-7, (i d- 1)/1-7]. Let Pc, be the probability that G’ contains more than
cn edges, where c is a constant dependent on the dimension k. We have to show that
both Pc’ and P/ are o(1/n:).

We shall first bound P. Fix an ordering on the points in the unit k-cube. Assume
that there are at least two edges el and e whose lengths lie in the interval [in -7, (i +
1)n-7], for some i. Suppose el, e: have an endpoint in common and el =(x,y),
e (y, z). Then the points x and z are restricted to lie in a shell, of thickness n -7 and
radius at most k, around point y, and there are at most n possibilities for triples
(x, y, z), Suppose el, e2 do not have an endpoint in common and e (x, y), e: (z, w).
Without loss of generality let x_-< y and z-< w. Then x is restricted to lie in a shell, of
thickness /1-7 and radius at most k, around y; z must lie in a similar shell around w;
and there are at most n4 choices for tuples (x, y, z, w). We thus have

eL<krt7((c-) FI -- (c-) 4
0

where c and c are constants dependent on dimension k.
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MINIMUM SPANNING TREES 579

We shall now estimate Pc’. Let us assume that n is a power of 2k. Let mi 2ki,

fli {b: b Bi, (Pl, P2) Ci, either pl b or p2 b},

and

H, {Tr(b, b2, i): b, B,, b2 B,,pl b,p2 b2, (p,p)

We note that the volume of each region in IIi is at least m71. There exists a constant

c5-> 1, dependent on k, such that for each i, i= 1,. ., 6, each region in IIi intersects
at most c5 other regions in Hi. Let c3 (36k + 3) k. There are at most c3mi possibilities
for regions in Hi. We let c6 be the smallest positive integer greater than 16 such that
2c6/C > 2 + 1Oge (C3C5) -I" 6C6 and (76 + 2c6 loge (1 + 2-"6).

We define Pi as follows.
(1) For n! mi > 6c3 logz n, let Pi be the probability that Ci is not empty.
(2) For 2e6 < n/m <- 6c log2 n, let Pi be the probability that Ci contains more than

c3m edges.
(3) For 1-< n/mi <= 2e6, let Pi be the probability that the number of edges in Ci

exceeds c3c7m where c7 2e422%.
Let PD be the probability that the number of edges in D exceeds c3c7rl.

Let the constant c in the definition of Pc, be 4C3C7. If the number of edges in G’
exceeds 4c3c7n then either D contains more than c3c7n edges, or for some i, 1 -< <- 6,
Ci contains more than c3c7m edges. Hence,

i=1

We shall show that each of Pi and Po is o(1/n4) and it then follows that Pc, o(1/n)
as 6 -<_ log n. In order to bound P we consider three cases depending on the value of
r//mi.

Case 1. n/mi > 6e3 log2 n. In this case we show that there is a large empty region
in the unit k-cube [0, 1]k. If C is nonempty there is at least one region in H and this
region does not contain a point in E There are at most c3m possibilities for regions
in H and each of these regions has volume at least (m)-. Hence,

Pi c3m 1- =o

We shall now give a lemma that will be useful for Case 2 and Case 3. Let Po be
the probability that the number of boxes in Bi, which contain at least e22 and at most
e22j+t points in V, exceeds rni/23j.

LEMMA 4. Let U> (n/rn) 1, and (n/rni)<-6c31og n. Then l.ogz,j=jo P0 (1/n4)
Proof Suppose 2 _-> 6c3 log2 n, and 2 => (n/mi). As Po is bounded by the probabil-

ity that there is at least one box in Bi with at least e22 points, we have

Po <- mi e22J (mi)-e22’

e22
FI _e22

<----mi( (mi)

mi e-e22i0 (using Stirling’s approx.)D
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580 PRAVIN M. VAIDYA

Suppose -(n/mi)-<=2 < 6c3 log2 n. We can get a bound on Pii by first choosing mi/23j
boxes in Bi, then choosing eZmi/22i points to be located in the chosen boxes and
letting the remaining points lie anywhere in the unit k-cube. So

mi/23J e2m./2z.i
2

<
(mi) mi2-3i eZm2-2i

2_3jemi2-2
(m;2-3J) (e2m2-2.;)

k] (Stirling’s approx.)

O

The proof of the lemma then follows.
Case 2. 2; < n/m N 6c log n. This case is broken down into two subcases depend-

ing on the number of boxes in . We have

e(l,l> 8mn-) + Pr(lSmn and levi> c3m)
o(1/n4)+ o(1/n)=

If I,t> amen- then there is a large empty region, whereas if Imn- and
C> cm then there is a concentration of points in some region.

7Case 2.1. Suppose t> 8mn There are at least 1/2 regions in H and as a
region in H intersects at most c5 other regions in
disjoint regions in H each of which does not contain any point in M As there are at
most c3mi choices for regions in g, and each region in
we have

( c3mi )e([,! > 8m -6) c mn-6)7,--6tn cmin

<
(cm),’.-
(c;mn_6) (1 c; 6 --6)n.

Using Stirling’s approximation for factorials, taking logarithms and noting that IOge (1
X) --X, for 0 x < 1, we get

1Oge ((1#,1 > 8m, -1 + 1 +log (c3c5) + 61Oge

Thus

C52c6(6C3 log2 n)6"

--6 4).Pr([flit?> 8min )=o(1/n

Case 2.2 Suppose It,l < 8m7 -6
in andlCil>c3mi. Letjo=210g2(n/mi)-l. Apoint

in any box b in Bi is joined to points in at most c3 other boxes in Bi by edges in Ci,
and so we have that

c3 (lb Cl V[) >= [C,I > c3m,
b
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MINIMUM SPANNING TREES 581

and hence

(lb fq V[)2> (1 --2-c6+l)mi.
bi [hA V[2io

Then for some Lj =Jo( 2 logz (n/rn)- 1),. ., log2 n, the number of boxes in/3i (and
hence Bi), which contain at least e22 and at most e2-i+ points in V, exceeds rail23i.
Then from Lemma 4,

Pr(l,lN8m,n and[Ci[>c3mi)N 2 Po =
=Jo

Case 3. 1 nm U6. Suppose [CI > C3cTmi. A point in box b in B is joined to
points in at most c3 other boxes in B by edges in C, and so we get

c E (Ib Wl)= 1C, > ccm, 2e422%c3m,
bG B

hence,

E (Ib f"l V[)2 > (2e4-1)22C6m,.
be Bi, ]bf’) VI2c6

Then for some j, j c6," , log2 n, the number of boxes in Bi, which contain at least
eZU points and at most e22i+ points in V exceeds mi/23j. Then from Lemma 4 we
can conclude that

Pi--- 2 Pij
j=c

By reasoning in the same manner as in Case 3 above we can show that Pc, o(1/ n4).

5. Conclusions. We have given an O(e-kn log n) algorithm for finding an approxi-
mate minimum spanning tree .on a set V of n points in k-dimensional space, the weight
of the approximate minimum spanning tree is guaranteed to be at most (1 + e) times
the weight of a minimum spanning tree. We have also presented an algorithm for
finding a minimum spanning tree on a set V of n points in k-dimensional space. Under
the assumption that the set V consists of n random points, independently and uniformly
distributed in the unit k-cube [0, 1] k, the expected running time of this minimum
spanning tree algorithm is shown to be O(n(cn, n)) where c is a constant dependent
on k and is the inverse Ackermann function.
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