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Abstract 

We study the problem of finding a minimum spanning tree 
on the complete graph on n points in E' ,  with the weight 
of an edge between any two points being the distance 
between the two points under some distance metric. A fast 
algorithm, which finds an  approximate minimum spanning 
tree with wei h t  a t  most (1+c) times optimal in 

developed for the L,, q =2,3, ..., distance metrics. Moreover, 
if the  n points are assumed to  be independently and uni- 
formly distributed in the box [0,lIk, then the probability 
tha t  the approximate minimum spanning tree found is an 
exact minimum spanning tree is shown to be (1 - o ( l / n ) ) .  

~ ( n  logn (( logn)  9 + log(€-')(logn)'.'a~('-')) time, is 

1. Introduction 

Given an undirected graph with a weight assigned to 
each edge, a minimum spanning tree (MST) is a spanning 
tree whose edges have a minimum total weight among all 
spanning trees. The  classical algorithms for finding an MST 
were given by Dijkstra [5], Kruskal [8), Prim [lo] and Sollin 
121. It is well known tha t  for a graph on n vertices, an  MST 
may be found in O(n2)  time. For a graph with m edges and 
n vertices, it was shown by Yao 1141 tha t  an MST may be 
found in O(m loglog n) time. Further results on MST's may 
be found in Cheriton and Tarjan [4]. 

A set of n points in k-dimensional space can be 
thought of as the set of vertices of a complete undirected 
graph, with the weight of an edge between any two points 
being the distance between the points under some distance 
metric. Each point x is given as a vector ( z l , z2 ,  ..., x k ) .  We 
use Ek ta denote the space of all k-tuples of real numbers, 
and E:, q=1,2, ...,m, to  denote the space of all k-tuples of 
real numbers with L ,  metric, i.e. the  distance between any 

1 - 
two points z and y is given by d,(z,y) = ( 5 I Z ,  - y, l q )  '. 

, =1 . _  
(Note tha t  d,(z,y) = max Iz, - y, I). A simple way to  find 

an MST on such a graph is to  explicitly compute all the 
edge weights and use an O(n2) algorithm for general 
graphs. Shamos and Hoey [12] gave an O(n  log n) algo- 
rithm for n points in the plane (k=2) with Euclidean 
metric. Yao [15] gave algorithms which construct an MST 
in time 0(n2-2'*+' (log n)' -2'k+') for any fixed k 2 3 ,  and 
the distance metrics L,, q=l,2,m. Fast algorithms for fixed 
k 2 2  and the L ,  and L ,  distance metrics are given in [7]. 

I 

In many applications of MST's like clustering and pat- 
tern recognition [6, 171, a spanning tree whose weight is 
close to the weight of an MST would serve the purpose just 
as well. Also, in geometric and st)atistical applications an 
approximate minimum spanning tree (AMST) might be 
adequate for the job. Sa it is useful to investigate if there 
exist fast algorithms for finding an AMST, with the pro- 
perty tha t  the weight of the AMST obtained is a t  most 
( l + c )  times the weight of an MST, for any given fixed c>O. 
An algorithm for finding an AMST for k=3 and the L ,  dis- 
tance metric is given in 131 but  the running time depends on 
the ratio of the maximum to the minimum distance 
between any two points. We develop an algorithm for con- 
structing an AMST on the associated complete graph on a 
given set of n points in E:, where g=2,3,4 ,..... , which runs 
in O(  n logn ((logn)k + l o g ( E ~ l ) ( l o g n ) k ~ ' a ~ ( k ~ ' ) )  ) time, and 
is guaranteed to  produce an  AMST whose weight is a t  most 
( I + € )  times the weight of an  MST, for any fixed a>O. We 
also show tha t  for n random points, independently and uni- 
formly distributed in the box [ 0 , l I k ,  the  probability t,hat t,he 
AMST found by the algorithm is an  exact MST is 

Similar techniques can be used to  devlelop algorithms 
for finding an  MST under the L ,  and L ,  distance metrics 
with running times O(n  (logn)k+2) and O(n  (logn)"'), 
respectively, but  as fast algorithms for the L ,  and L ,  dis- 
tance metrics have already appeared in 171 we shall not 
describe them here. 

As far as the model of computation is concerned, we 
assume a random access machine with arithmetic on real 
numbers and charge uniform cost for all access, arithmetic 
and comparison operations. 

We introduce a few definitions before proceeding 
further. All definitions pertain to  some E:, q=1,2,3, ... and 
some fixed a>O. An a-closest neighbor in S, of a point p, in 
S ,  is some point p, in S ,  such tha t  
length((p,,p,)) 5 (l+a)length((pl,p')), where p is a closest 
neighbor of p, in S,. An e-smallest edge from SI to S ,  is an 
edge e from a point in S, to a point in S ,  such tha t  
l e n g t h ( e )  s (l+r)length(e'),  where e '  is the smallest edge 
from a point in S ,  to  a point in S,. An r-neighborhood of 
a point p is the set of those points whose distance from p is 
less than or equal to  r under the distance measure under 
consideration. 

( 1  -o ( l /n ) ) .  

'This work was partially supported by the National Science Foundation 
under grant MCS 81-07647 
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2. The approximate minimum spanning tree algorithm 

The approximate spanning tree algorithm follows t,he 
skeleton given below. 

Algorithm AMST 
Begin 
Step 1 .  Build a range tree 11, 9, 131 on the given set 

S of n points, and form a collection of k ordered 
lists Lis t , ,  i = 1 , 2  ,..., k ,  with List ,  containing all the 
points in S sorted on the it' co-ordinate. Initialize 
the forest to consist of trees with a single node each 
and initialize the list Tree -edges to  ni l .  
Step 2 .  Repeat steps 2.1 through 2.5 till the  the 

forest contains a single tree. 
Step 2.1.  Pick T ,  a tree containing the least 

number of points. 
Step 2.2.  Delete all points in T from the 

data  structures being used and initialize the 
list of candidate -edges. 
Step 2.3.  Using the data  structures which 

now cont,ain only points belonging t,o ( S  - T ) ,  
for each point p in T ,  under the required dis- 
tance measure, find an  e-closest neighbor p'  in 
( S - T )  and add edge ( p , p ' )  to the list of 
candidate -edges. 
S tep  2.4.  The smallest edge e on the list of 

candidate -edges is an e-smallest edge between 
T and S - T .  Let T and T' be the trees joined 
together by edge e .  Coalesce T and TI, 
thereby reducing the number of trees in the 
forest by one and add e to  the list of 
tree -edges. 
S tep  2.5. Restore all da ta  structures by 

inserting back all points in tree T .  
end AMST 

The routine Algorithm e-closest neighbor for finding 
an e-closest neighbor in ( S - T )  of a point p in T is 
described in Section 3 .  A brief sketch of this routine is as 
follows. The routine maintains two distances r l  and r 2  such 
tha t  the rl-neighborhood of p does not contain a point in 
( S - T )  whereas the r2-neighborhood of p does contain a 
point in ( S - T ) .  Let r =(r l+r2) /2 .  The  r-neighborhood of 
p is approximated by a collection of boxes (with sides paral- 
lel to  the co-ordinate axes) such tha t  the collection of 
approximating boxes contains the r-neighborhood of p and 
is itself contained in the r(l+a')-neigborhood of p ,  for some 
e' dependent on 6. By means of a sequence of range 

searches it is determined whether the approximating boxes 
do or do not contain a point in ( S - T ) ,  and r l  and r 2  are 
suitably updated depending on the outcome of the range 
search. We stop when r l  and r2 are close enough. 

The  routine Algorithm Gerzbozes for generating a col- 
lection of boxes which approximates the r-neighborhood of 
a point p is described in Section 4 .  A brief overview is as 
follows. The  r-neighborhood of p is projected onto a 
sequence of planes perpendicular to one o f  the co-ordinate 
axes. The  projection of the r-neighborhood onto a plane 
itself forms a smaller neighborhood of the projection of p 
onto the plane, in a space of one less dimension. A collec- 

t,ion of boxes which approximates the projection of the r- 
neighborhood onto a plane is recursively obt,ained and then 
used to  generate a collection of boxes which approximates 
the portion of the r-neighborhood between this plane and 
the next plane in the sequence. 

The  probability tha t  the AMST found is an  exact 
MST, under the assumption tha t  the n points are indepen- 
dently and uniformly distributed in is computed in 
Section 5. 

Utilising a range t.ree [ I ,  9, 131, we can search a paral- 
lelepiped in Ek in O ( ( l ~ g n ) ~ - ' )  time. Building the range 
tree intially takes O ( n ( l ~ g n ) ~ - ' )  time and all points in some 
subset T of S may be inserted into or deleted from the 
range tree in O( I TI (logn)'-') time. Each list in the collec- 
tion Lis t , ,  i=1,2, ..., k, is implemented as a 2-3 tree, with 
each node containing three extra units of information giv- 
ing the number of elements in the left, middle, and right 
subtrees rooted a t  the node. This allows the operations of 
insertion, deletion, searching for some element, and access- 
ing the element with some given rank j, to  be done in 
0 (logn) time. 

The  forest maintenance may be efficiently carried out 
using UNION and FIND procedures described in 1111 and 
this requires time O ( n  log n) .  A tree containing the least 
number of points may be picked by maintaining a priority 
queue for the trees in the forest and the total work for 
maintaining the queue is bounded by O(n  logn) .  An e- 
smallest edge between tree T and ( S - T )  may be found in 
O (  I T I  ( ( ~ o g n ) '  + Iog(t-')(logn)k~'e-(k')) time. AS a t  
each stage the tree with the least number of points is 
chosen, the overall running time of the algorithm is 
O( n logn ((logn)b + log(E-l)(logn)"~e~(k-') 1 1. 

We now show tha t  the AMST generated by the algo- 
rithm has weight a t  most ( l + e )  times the weight of an 

MST. Let T,  be an  MST and let T,  be the AMST pro- 
duced by Algorithm A M S T ;  we shall give a bijection 
f : T ,  - T,  such tha t  for any e in T,, 
l eng th (e )  ( l + c ) l e n g t h ( f ( e ) ) .  As the algorithm proceeds 
we shall carry around a subset, of edges in T,. Let Zi be 
tbe set of edges in T,  still remaining after i edges have 
been added t o  the  AMST To .  A correspondence will be 
drawn between the edge deleted from 2, to  obtain Zi+l 
and the ( i+l )a t  edge added to  T,. 

Cla im.  T h e  edges in 2, form a spanning tree on the 
forest a t  stage i, if we consider each tree in the forest to  be 
a super node. 

The  claim holds in the beginning as every tree in the 
forest consists of a single node and as 2, = T,. Let e be 
the ( i + l ) s f  edge added to  T,  and let T and T' be t,he two 
trees joined together by e .  There are two cases 

Case 1 .  There is an edge 1 in Z, between T and T'.  
Then as e is an e-smallest edge from T to ( S - T ) ,  we have 
l eng th je )  c ( l + e ) l e n g t h ( l ) .  We let f ( e )  = 1 and obtain 
Z,,, = 2, - { I } .  Zi+, still forms a spanning tree on the 
forest after T and T' are coalesced. 
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Case 2.  There  is no edge in Z, between T and T'.  
From the above claim, there is a path from T t o  TI. Let 1 
be the first edge on this path; E goes between tree T and 
some other tree T"; moreover there is an edge in Z,, other 
t han  1 ,  incident on TI'. We let f ( e )  = 1 and 
Z,,, = Z, - { l } .  Z,,, will form a spanning tree on the 
forest after merging trees T and T'. Also as e is an  e- 
smallest edge between T and ( S - T ) ,  we have 
length( e )  c (1 +e) length( f (e)) .  

This completes the proof of the existence of the 
required bijection f between the AMST T ,  and some fixed 
MST T,. 

3. Finding an -close;;t neighbor 

In this section we describe a procedure 
Algorithm e-closest neighbor for finding an a-closest neigh- 
bor in ( S - T )  of a point p in T ,  under L,, q=2,3  ,.... dis- 
tance metrics. The  algorithm takes as input a range tree 
containing all the points in ( S - T ) ;  a subset T of S ;  a point 
p in T ;  t, the  measure of closeness; q ,  the distance metric 
index; and List,, containing all the points in ( S - T )  sorted 
on the it' co-ordinate, for i=1,2 ,..., k .  

The  routine maintains two distances r l  and r 2  such 
tha t  the r,-neighborhood of p ,  under the L,  distance 

measure, does not contain a point in ( S - T )  whereas the r2- 
neighborhood of p ,  under the L,  distance measure, does 
cont,ain a point in ( S - T ) .  A sample point p' in the r2- 
neighborhood of p is also maintained. At each stage, the 
r-neighborhood of p ,  where r = ( r l  + r2) /z ,  is approxi- 
mated by a collection of O ( d - l ) )  boxes such tha t  the col- 
lection of boxes contains the r-neighborhood of p and is 
itself contained in the r (1  +e')-neighborhood of p ,  where 
a' =e/(4 + 26). The  approximating boxes are generated 
using Algorithm Genboxes described in Section 4 .  By a 
sequence of range searches (utilising the range tree), it i s  
determined whether the approximating collection of boxes 
does or does not contain a point in ( S -  T ) .  r1 is set t o  r if 
the boxes do  not contain a point in ( S - T ) .  On the other 
hand if the collection of boxes does contain a point, in 
( S - T ) ,  r 2  is set t o  d,(p,,p') where p' is computed as follows. 
If the approximatmg boxes contain less than  
(a-(k- l ) ( logn)k-l)  points in ( S - T )  then we let p' be a point 
in ($2') t ha t  is located in the approximating boxes and is 
closest t o  p among all points in ( S - T )  located in the 
approximating boxes; otherwise we let p' be some arbitrary 
point in ( S - T )  t ha t  is located in the approximating boxes. 
As the boxes contain the r-neighborhood of p and are 
themselves contained in the r (I  +e')-neighborhood of p ,  the 
properties associated with r l  and  r 2  are preserved by the 
update. 

An initial estimate of r i  and r 2  is obtained by first 
finding a, the distance between p and its closest Lx- 
neighbor p x  in ( S - T ) ,  and letting r l  = ( a / k ) - t  and r 2  =a. 
a may be determined by a sequence of binary searches in 
O ( ( l ~ g n ) ~ )  time, utilising the range tree and  the collection 
of ordered. lists List,, i=1 ,2  ,..., k. We start  with p ' = p x .  

The  algorithm stops when r 2  5 ( r , ( l  + 2e'))/(l -26') .  
p' is then an a-closest neighbor in ( S - T )  of p .  Moreover, we 
are guaranteed tha t  if p '  is not a closest neighbor of p in 
($2') then there are a t  least (e-(k-l)(logn)k-l)  points in 
( S - T )  such tha t  the distance of each of these points from p 
is a t  least dq(p,p ' ) / (1+2a)  and a t  most (1+2t)d, (p ,p ' ) .  

An update of r l  or r2  decreases the difference ( r 2 - r l )  
by a t  least a factor of 4 /3  and so the number of stages in 
the algorithm is bounded by O(logk log(e-')). The  time for 
searching the approximating boxes using the range tree is 
bounded by O ( ( l ~ g n ) ~ - ' )  for every stage. The  time for gen- 
erating the boxes i s  O ( d - ' ) ) .  Moreover, a closest L,- 
neighbor in ( S - T )  of a point p in T may be found in time 
O ( ( l ~ g n ) ~ ) .  This gives a bound of 

O( ( l ~ g n ) ~  + log(e~')(logn) '  for the overall running 
time of the algorithm. 

4. Generation of approximating boxes 

In this section we describe how to generate the collec- 
tion of boxes tha t  approximates the r-neighborhood of 
some point p .  The  projection of any point w in the r-  
neighborhood of p onto the xk =Pk + z and zk =pk - z ,  

z>O,  planes satisfies ( C l w ,  - p I  l q )  5 r q  - z q .  So the pro- 

jections of the r-neighborhood of p ,  onto the xk =pa  + 2 
and Xk =Pk - Z planes, themselves form ( r q  -E")- 

neighborhoods in a space of dimension ( k - - l ) ,  of the projec- 
tions of p onto the respective planes. Suppose we have a 
collection of boxes tha t  contains and approximates the 
( r q  -z9)-neighborhood of the projection of p onto the 
zk = p k  + z plane. Each of these boxes is defined by a set of 
( k - 1 )  closed intervals which give an upper and a lower 
bound on each of the first ( k - I )  co-ordinates of a point in 
E'. Then, adding the constraint zk E [Pk + z ,  pk + z + S ]  t o  
the set of constraints defining each box in the collection, 
produces a collection of closed boxes in E k  which contain 
and approximate the portion of the r-neighborhood of p 
which lies between the zk =Pk + z and zk =pk + z +  8 
planes. On the other hand, adding the constraint zk E 
[pk - z ,  Pk - z  -61 t o  the set of constraints coresponding to  
each box in the collection, gives a set of boxes which con- 
tain and  approximate the part  of the r-neighborhood of p 
which lies between the xk =pk  - z  and zk =pk - 2  -8  planes. 
This gives a way of recursively contructing the desired col- 
lection of boxes. We take the projection of the r -  
neighborhood of p onto each plane in a set of planes given 

by zk =PI + rie,  i=O, l l ,  ..., [s- l l - l .  For each i, the  projec- 
tion of the r-neighborhood onto the xk =pk + rde plane is 
recursively approximated, and  the boxes approximating t,his 
projection are utilised to  obtain a collection of boxes which 
approximate the portions of the r-neighborhood, between 
the zL =Pk + rie and zk = p k  + r ( i + l ) e  planes, and  
between the xk =pk - r i a  and  xk =pk  - r ( i + l ) c  planes. 

h -1 

i =1 
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Algorithm Genboxes 
I n p u t :  p ,  the point around which the set of boxes is t o  be 

generated; r ,  size of the neighborhood of p t o  be approxi- 
mated; k ,  the  dimension; L, ,  the distance measure; e, the 
measure of accuracy, 0 < e 5  1. 

Output :  a collection of boxes which contains the r-  

neighborhood of p and is itself contained in the 
( r  ( I  + 2(k-1)~))-neighborhood of p .  
Begin 

If k= l  then return a list containing two one- 
dimensional boxes defined by [ p ,  - r ,  p,]  and  [ p , ,  p ,  + r ] ;  
else 
Begin 

Compute an  r' satisfying 
r (1 -iqeq)'/q 5 r '  5 r (1 - i q E ~ ) ' / q  (1 + e/4k); 
List-of -boxes := n i l ;  

For i=O t o  ( [e- ' ]  - 1) do 
Begin 

Call Genbozes recursively to  obtain a list L 
of boxes which contain and  approximate the 
r'-neighborhood of the projection of p onto 
the x k  =pk + r i c  plane, in a space of one less 
dimension; 
For every box b in L add constraints 

Zk E [pk + r ie ,  Pk + r ( i + l ) e ]  and  
xk € [pk - rie,  pk - r(z + 1)e] t o  the set of con- 
straints defining box b ,  in order t o  get two 
sets of constraints, each set  defining a box in 
E k ;  and put  the two boxes so defined on 
Lis t -o f  -boxes; 

end; 
end; 
return Lis t -o f  -boxes; 

end Genbozes.  

The  floor and  ceiling of l/e may be computed in 
O(log(E I ) )  time. Moreover, if e is fixed the qth roots of the 
quantities (1 - iqeq ) ,  i = O ,  ...,( E -1), may be computed once 
and  for all, and  stored in an  array for repeated use by 
Algorithm Genbozea.  So r l /e l  such computations are 
sufficient. Since the quantity Q whose qth root is t o  com- 
puted is always greater t han  or equal t o  E, we may first 
compute j such tha t  (1 + l /q)(J-l)q 5 1/& 5 (1 + l/q)'q in 
O(log(l/c-')) steps and  then use the Newton-Raphson 
method with (1 + l / q ) - '  as an  intial approximation t o  the 
q th  root of Q t o  obtain r '  satisfying 
~'1, 5 r '  5 Q'/,(I + e/4k) in O(log(c-')) iterations. Once 
the precomputed roots are available the algorithm takes 
time proportional t o  the number of boxes generated which 
is ~ ( e " ' )  

T h a t  the collection of approximating boxes contains 
the r-neiphborhood of p is evident from the construction 
What  remains to  be shown is t ha t  the maximum L, dis- 
tance between p and any point in any of the boxes is a t  

most r (1 + 2(k-l)e). Assume tha t  for any dimension 
i s ( k - l ) ,  the procedure generates a set  of boxes such tha t  
the maximum distance d, between p and a point in any box 
satisfies d /  5 r q  (1 + 2(i-l)c). This may be easily verified for 
(k-1)=1. By hypothesis, the maximum distance dk- l  

between the projection of p onto the zk = p k  + r ir  plane 
and  a,n; I j o i n t ,  in the boxes approximating the 
( r  (1 - e  z ) neighborhood of the projection of p onto 
the zk =pk + r ic  plane, in a space of dimension (k- l ) ,  
satisfies df- ,  5 r ' J (1  -i ,rq)(l  + c/4k)'7(1 + 2 ( k - 2 ) ~ ) ' 3 .  The  
maximum distance d k  between p and any point in the 
approximating boxes lying between the xk =Pk + r ie  and 
x k  =pk + r ( i + l ) e  planes or the xk = P I  -rde and 
zk =pk - r ( i + I ) c  planes satisfies d f  I dj.l + rq ( i+ l )qe f .  
These two relations together with a little algebraic manipu- 
lation and  the facts i e s  1 and  e 5 1 lead to  the desired 
relation df 5 rq(1 + 2 ( k - l ) ~ ) ~ .  

5. Probabilistic Analysis 

Consider a set  S of n random points independently 
and  uniformly distributed in the box [0,1Ik. We shall com- 
pute an upper bound on the probability tha t  the AMST 
generated by the approximate spanning tree algorithm is 
not an  exact MST. If the  AMST obtained is not an exact 
MST then some c-smallest edge tha t  was found between a 
tree T and ( S - T )  was not the smallest edge between T and 
( S - T ) .  Let us call such an c-smallest edge an  incorrect 
edge. Let (p i ,p i )  be an  incorrect edge, where pi E T and 
pi E ( S - T ) ;  r = d,(pi,pi), where I,, is the distance metric 
under consideration; r '=r / (1+2c) ;  and  r" =(1+2c) r .  Let 

m = I c- (k- ' ) ( logn)k- l  I Then there is no point in ( S - T )  in 
the interior of the r'-neighborhood of p ;  and there is no 
point in T in the interior of t he  r'-neighborhood of pi. The  
intersection of the r'-neighborhoods of pi and pi defines a 
forbidden region in which no point in S may be located. 
The  volume of this forbidden region is c1 times the volume 
of the r'-neighborhood of p i ,  where c 1  is some constant 
dependent on the dimension k ,  the distance metric L,  and 
c. In addition, the shell around p; ,  of radius r '  and thick- 
ness ( r"-r ' )  (i.e. the  set  of points whose L ,  distance from 
pi is a t  least r '  and  a t  most r"), contains a t  least m points. 

Let Pa be the probability tha t  the AMST has an  
incorrect edge. Let e ( p i , p j )  be the event t ha t  ( p i , p j )  is an  
incorrect edge in the AMST and tha t  pi was in some tree T 
and pi was in ( S - T ) ,  when (pi ,pi)  was obtained by the 

algorithm. Then  

We have 

) 

1 1' . 

p ,  5 n2 W . ( P j > P j ) ) .  

Pr( e ( ~ i , ~ j ) )  = S W l ength( (p i ,p i ) )  = r  1 ~ ( r )  dr 

W e ( p ; , p i ) )  5 m y  P ( r ) .  

where P ( r )  =Pr( e(pi,pi)  / l ength( (p i ,p i ) )  = r ) .  This gives 

Let Ps(r)  be the probability tha t  a shell around pi  of 
radius r '  and thickness ( , " - , I )  contains at least m points 
and  P l ( r )  the probability tha t  a particular point lies in the 
shell. Then  we have 

ps ( r )  5 ('-2) m ( P d r ) ) "  

Let P F ( r )  be the probability tha t  the forbidden region 
defined by (pi ,pi)  does not contain any point in S and 
P 2 ( r )  the probability tha t  a particular point lies in the for- 
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bidden region. T h e n  

Since P ( r )  s Ps(r) a n d  P(r) 
PF(r) = (1 - ~ ~ ( r ) ) " - ~ .  

PF(r), we get 

max P ( r )  = m a x  { max Ps(r), ~2: PF(r)}.  
r r <r ,  0 

Choose ro such t h a t  P l ( r o )  = ( e - 1 1 0 g n ) k - 2  ~ ; and e such t h a t  

where c 2 z  3. Then,  for k 2 3 ,  
c 2 P d r )  

'2(') € - ( k - 2 )  ( l o g n ) k - 3  ' 
we have 

and  

1 
max PF(r) 5 PF(ro) -. 

n c 2  
r Z r o  

This gives Pr( e ( p i , p i ) )  I l/(ncz) and  P ,  = o( l /n ) .  

8. Conclusion 

We have developed a fast heuristic for finding approxi- 
mate  minimum spanning trees on t h e  complete graph  on n 
points in E;, for t h e  L,, q=2,3 ,  ..., distance metrics. T h e  
weight of t h e  AMST produced by  the  algorithm is at most 
( I + € )  times t h e  weight of a n  MST. Moreover, if t.he n input 
points are  assumed t o  be independently and  uniformly dis- 
t r ibuted in t h e  box [0,llk, then  the  probability that  the  
AMST produced by t h e  algorithm is a n  exact MST is 
( 1  - o ( l / n ) ) .  
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