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A b s t r a c t  

In the first part of the paper, we extend Karmarkar's interior point method to give an algorithm for Convex Quadratic Pro- 
gramming which requires O(Na'~7(logL)(logN)L) arithmetic operations. At each iteration, Karmarkar's method locally minim- 
izes the linear (convex) numerator of a transformed objective function in the transformed domain. However, in the case of 
Convex Quadratic Programming the numerator of the transformed objective function is not necessarily convex. We give a 
method that, at each iteration, locally optimizes the original objective function in the original domain itself. As a consequence 
we also obtain a monotonic decrease in the objective function. In the second part, we show how to solve the linear program 
describing the multicommodity flow problem, with s commodities, in O(sSSv2"Se L) arithmetic operations. In each problem 
arithmetic operations are performed to a precision of O(L) bits where L is bounded by the number of bits in the input. 

1. Convex Quadratic Programming 

1.1. Introduction 

In the first part of the paper we consider the problem of 
minimizing convex quadratic functions over po[ytopes, i.e. 
the Quadratic programming problem, 

min [(x) =~-xTBx + p T x  
2 

s.t. Az g_ b 
x ) 0  

where p and x are in R", A is in R m×~, b ~ R m and 
B C R nx~ is a positive semi-definite matrix. Let N = n+m. 
This problem was first solved by adapting the simplex 
method for linear programming [10]. A polynomial time 
algorithm for this problem was first presented in [6]. This 
polynomial time algorithm uses the ellipsoid method and in 
the worst case performs O((N*L) arithmetic operations 
where each operation requires a precision of O(L) bits, (L is 
bounded by the number of bits in the input). Here we 
describe an algorithm for the Quadratic programming prob- 
lem which requires O(NaST(logL)(logN)L) arithmetic opera- 
(,ions each performed up to a precision of O(L) bits where 

L = log (largest absolute value of the determinant 
[B ATI  

of anysquaresubmatrixof[  o p 
+log(max Pi) + log(max b;-) + loCN 
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We assume without loss of generality that the problem 
is in the standard form, 

rain f (x)  : I~xT Bx + pr  x 
2 

s.t. Ax + y =b 
eTz =M 

z ~ O  

where z T =[Zl, Z2, xT,yT], N =n+m+2,  z C R N, 
x E R ' ~ , y  C R m , A  C R  rex" , b ~ R  m and 
eT=[1,1,...,1] C R N. Any Quadratic programming problem 
can be transformed into the above form by a shift of origin, 
addition of slack variables Yl and by introducing the equality 

~ x i  + ~Y i  + zl + z2=M 
i = l  i=1  

for a large enough value of M. ( M=N42 i suffices ). 

We follow Karmarkar's method for linear programming 
and at each iteration reduce the global optimization to a 
series of local optimizations. The point obtained after 

O(NL) such iterations is sufficiently close to the optimal and 
an exact optimum is then found. As in [4] convergence is 
measured by a potential function. In order to obtain a 
reduction in the potential function, at each iteration Karmar- 
kar uses a projective transformation to obtain a local optimi- 
zation problem in the transformed domain. The projective 
transformation maps the linear objective function to a ratio 
of linear functions and the local optimization involves the 
minimization of the numerator of the transformed objective 
function over an ellipsoid. For the Quadratic programming 
problem however, since the objective function contains both 
a linear and a quadratic term the application of the projec- 
tive transformation does not always map the convex qua- 
dratic form to a function whose numerator is convex. So the 
approach of locally optimizing the numerator of the 
transfo(med objective function fails. In section 1.2 we show 
that if the function f ( z )  being minimized is convex, a poten- 
tial decrease can still be found by a set of local optlmizations 
in the original domain itself. In each local optimization f ( z )  
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is minimized over an ellipsoid. As a consequence we obtain an 
a lgor i thm where the value of the objective funct ion also 
decreases at each i teration.  In section 1.3 we then present  an 
a lgor i thm which minimizes  convex functions over polytopes. 

In section 1.4 we reduce the local opt imizat ion problems 
arising in the  convex Quadra t ic  p rog rammi ng  problem to a 
s impler  form which we show how to solve efficiently. In sec- 
t ion 1.5 we improve the amort ized  complexity of the convex 
Quadra t ic  p r o g r a m m i n g  algor i thm to O(NS'Sr(logN)(logL)L) 
ar i thmet ic  operat ions by solving slightly modified local 
opt imizat ion problems.  In section 1.6 we show how to find 
an exact  o p t i m u m  from a point  sufficiently close in objective 
funct ion value to the op t i mum.  Finally, in section 1.7 it is 
shown tha t  O(L) bit number s  suffice for the a r i thmet ic  
operat ions.  

1.2. C o n v e r g e n c e  via  local op t lmiza t lons  

We measure  convergence by means  of the potential  
funct ion 

N Z - -  
p ( z ) = S l n ( f (  ) f o )  

{=1 zi 

where f ( z )  is the funct ion being optimized and f0  is the  
m i n i m u m  value of f ( z )  over the  polytope. We a s sume  tha t  
f ( z )  is convex. In this  section we show tha t  by using local 
op t imiza t ions  we can move from the cur rent  feasible point  to 
a point  which reduces the  potential  by at  least  a constant .  
Let  a=(al,ae~ ' ' ' , a N )  be the  cur rent  strictly interior feasi- 

ble point.  We first show tha t  there is an ellipsoid str ict ly 
wil~hln the feasible region which contains  a as well as a point  
which decreases the  potent ia l  by a constant .  We next  show 
tha t  by a series of minimiza t ions  of the convex function f ( z )  
over ellipsoids we can find such a point. In fact we can find a 
point  which not  only decreases the  potential  function by a 
cons tan t  bu t  also reduces the  objective funct ion value. (This 
approach extends in a s t ra igh t  forward manner  to reduce the  
problem of opt imizing arb i t rary  convex funct ions over 
polytopes to a series of local opt imizat ions;  however the local 
op t imiza t ions  appear difficult in mos t  cases). 

Consider  the  projective t r ans fo rmat ion  
^ ~ l  . ,  P - l z  
z = l  t z , = - -  , where D=diagIa:,a2, • • • ,aN] and 

eTD- lz  
zER N. This  t r ans fo rmat ion  maps  a, where a satisfies 

N 
S~,=M to ao=I:/N,"" :/N], the center or the simplex 
i = 1  

N 
Iz: ~ i = 1 ,  z~Ol .  The  inverse t r ans fo rmat ion  is given by 

i = 1  

z=T- : (~)=M under  the  condition tha t  e r z = M .  

Note t ha t  both  the  t r ans fo rmat ion  and its inverse map  
s t r a igh t  lines to s t r a igh t  lines. Let S be the  sphere in the  
t r ans fo rmed  domain  defined by 

N 
15: ~$12_<ot2/N(N-1)  -4- 1/1V' ,~{~:eTz=l] 

i=1  

and let E be T-i(S).  E contains  the point  a. Now as E is 
bounded,  and can be expressed as the intersection of a convex 
region defined by a quadrat ic  inequality and the  hyperplane 
eTz=M,  it is an ellipsoidal region. Moreover,  its intersec- 
t ion with eTD- l z=c ,  where c is some constant ,  is also an 
ellipsoidal region. The feasible region for the opt imizat ion 
problem is the intersection of the  affine space 
~={z:Ax,÷y=b ], the  hyperplane eTz=M,  and the positive 
o r t h a n t  z ~ 0  where zT=[zl, z2, z T, yT]. Since E is contained 

in the  positive or thant ,  E N D  is an elllpsoidal region t h a t  lies 
within the  feasible region and contains  a. 

Let z 0 be the  point  where f ( z )  is opt imized in D. If z 0 
is in E N D  then  opt imizing f ( z )  over the  ellipsoidal region 
suffices to find the  op t imum.  So suppose z 0 is not  in E ~ L / .  
Let  b be the point  where the  s t ra igh t  line joining a to z 0 
intersects  the boundary  of END.  The next  l e m m a  shows 
t ha t  the  potential  decrease P(a ) -P(b )  is greater  t h an  some 
constant .  We first define the following useful var ian t  of tile 
potent ia l  funct ion 

P(z)=gln(f (z)-f o) - Nln(e  T D -:z) 

w.r . t  the  cur ren t  point  a. 

L e m m a  1. Let  f ( z )  be a convex function. Th en  

P(a)--15(b)>a and thus  P(a)-P(b)>o~ ,~2 . 
- - 2(I-~) 

P r o o f .  Since b is the  point  where the  s t ra igh t  line joining a 
to z 0 intersects  the  boundary  of E ~ .  b=(:l-k)a+kz o and 

T( b )=(l--X) T(a ).÷X T(zo) 

where X = ~ / N .  As T maps  s t ra igh t  lines to s t ra igh t  lines 

. eTD-la  
( 1 - X ) = - ~ : - ~ - ( 1 - X )  

and since 

/(b)-Yo<_(1-X)(Y(a)-Io) 

f ( b )--f o < ee TTD~_-11ba 1-off  N)( f  (a )-fo).  

Thus P(a)-f'(b)_>~. Also 
f ( a ) _ f o  N ai 

P ( a )--P ( b )=Nln( f ( b~_ f o ) -- i_~lln(-~ -) 

N ~i 
> Nln(1/(1-c~/ N)) -- ,_~lln(-~-) 

~ 2  
_ > c ~ - - ~ - [ 4 , s e c t .  4,1emma4.2] • 

We next  show how to find a point  which gives a con- 
s t an t  reduct ion in potential .  Consider  the  hyperplanes  H L 
and H R defined by the equat ions 

eTD-lz=cL and eTD-lz=cL(14-1/N 2) 

respectively, where c L ~_ eT D-lb < CL(1-4-1/N2). Let b L and 
b R be the  points  which minimize f ( z )  over E N D N H  L and 
E N D N H  R respectively. And  let b E be the  point  which 

minimizes  f ( z )  over E N D .  

L e m m a  2. One of the  points  bE,bL,bR achieves a reduct ion 
of c ~ - N l n ( 1 . ÷ l / g  2) in 15(z) and thus  a reduct ion of 

~2 
c~ NIn(I + I / N  2) in P(z). 

2(1-~) 
P r o o f .  F i rs t  suppose tha t  c L _~ eTD-lbE _~ CL(I÷I/N2). 
Then  

T -1 e D b 
f(bE)--fo < f(b)-- fo _~ eT~a(1 - - c~ /N) ( l (a ) - - f o )  

and 

eTD -lb < eTD-lbE < e T D - l b ( I + I / N  2) 
i ÷ i / N  2 --  
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Thus 

Nlnt  f ( a ) - f °  ) Nln" erD- la  " P(al -P(b~)  = , ~  - / - ~ - ~  

T - 1  e ~ D-% > - N l n O - a / N ) - N l n (  / 
- -  eTD-lbE ' 

_> a - N l n ( l + l / N  2) 

Next suppose tha t  eTD-lbE<CL ( the case where 
eTD-lbE>cL(I+I /N 2) is similar ). Since f ( z )  is a convex 
function and as the straight  line joining b E to b intersects 
the plane er D-lz=cL, f(bL)<f(b ) . Thus 

T -1 e D b 
f(bL)--fo ~ e r ~ a ( 1 - o ~ / g ) ( f ( a ) - f o )  • 

Also eT D-lb - -  < eTD-~bL _< eTD-Xb and thus, as in the 
( 1 ÷ 1 / N  2) -- 

previous case, 

P(bL)--P(~) ~ ~-Nln( l+l /N ~) " 

Lemma 2 enables us to find a point which achieves the 
reduction of potential  as follows: Consider the sequence of 
planes H i defined as 

Hj={~: e rD-l~=cj ,  cj=(l+j/N~)e rD-l~  I , 
j =  • • • ,--2,--1,0,1,2, • • • 

Let H =  I Hj : H i N E N [ 2 #  ¢ I • Since the image of E is the 
sphere S with radius oliN, g / ( l+c~)  .< eTD-~z _< N/(1-c~) 
and hence the ratio of the maximum to the minimum value 
of eTD-lz  in E N / ?  is bounded by ( l÷a) / (1-c~) .  Moreover 
eTD-la=N.  There are thus O(N 2) hyperplanes in the set 
H.  Let b i be the point that  minimizes f ( z )  over EN~?NH i 
and let b E be the point that  minimizes f (z)  over E n n .  By 
definition ci+ ~ _~ c j ( l+ l /N  2) and thus Lemma 2 allows us to 
conclude that  one of the points in the set 
Ib~}U ~ J n  n [ b  "H E /7#¢I,  gives the desired reduction in 
potential.  

However, a point where the potential  function is 
reduced by a constant  may be found faster by using a form 

of binary search. First  we need the following definitions and 
lemma. Let P*(j)= min {ln(f(z)--fo)-lncil where HjCH 

EnnnH.i 
is defined by eTp- l z=cj .  LetP*(jo) =minP*(J).  

HiEH 
L e m m a  3. Suppose P*(J)>P*(Jo) and k lies in between j 
and J0" Then 

1 j--k ( l - -a )  2 (i_eP'(jo)-P'(D) 
P*(j) ~ P*(k) + 2 - j _ j o  ( l + a )  

P r o o f .  Let k be such that  c k :kcj+(1--k)cio. Thus 
k - j 0  

k = and by convexity of f (z)  
J--J0 

f(bk) ~ kf(bi)+(1--k)f(bh). Thus 

P*(k ) _< ln(k(f ( by)-f  o)+(1-k)(f ( bj ,)-f  o)) --ln(kci+(1-k)cyo). 

Now since 

f(bYo--fo) i n ( c i , )  
P *(jo)--P ~(j) = 1 n ( - 7 7 7 - - ~ )  -- , 

1 t o i - - J 0 )  cj 

f (bio)--.f o cJ° e P'(Jo)-F'(/) 
f(by)--fo cj 

and hence 

. . . . .  1 - - k  c io  P "(k) < P*(j) + In(X÷ 1-X CioeP 00)-P 0)) _ l n ( l + - - ~ - - - ~ - ) .  
- -  k c 1 

Finally, 

1 - k  cJo (l_eP'(Jo)-P'(J) , 

P*(j)--P*(k) ~ - - l n ( 1 -  >' cj ) 
1--k clo 

I ÷ - - - -  
X c i 

( l - -a )  ci--L< ~ and 1 - - k -  j--k the 
and since (l+a) <- c1 -- ( l - -a )  J--f0 

result follows, m 

Lemma 3 is next used to show that  only O(logN) 
optimizations of f ( z )  need to be done. 

L e m m a  4. One of the points in the set 

g B = I bi : / :0,=k 2k where 0 < k <  [log( 12H I )] itLj,bE ' f  , 

reduces the potential  by at least 
__~_~1 1--a))2 a a2 (1--a)2a2 

8 ( l + a )  2( l - -a)  32( l+a)N"  

P r o o f .  If b E gives the desired reduction in potential  then we 
are done. Thus suppose otherwise. By Lemma 2, 
P ( a ) / N  - P*(jo) _> a /N.  Let 2k~jo<2 k+l. Then by 

Lemma 3 

1 ( l - -a )  2 (l_eV'(Yd-Y'(0)). P*(2 k) < P*(O) -- 7 ( l + a )  

Also let 

P'(O) = th(a)/N - 7 ,  if>0 

Now if ~>a/2N then since P*(Jo)_~ P*(O), b2k gives the 

desired potential  change. Otherwise 

p * ( 2 k ) ~ } 5 ( a ) / g  _ 1 (l-a)2 a - (l-a)2a 2 
8N ( l + a )  3 2 ( l + a ) N  2 

Thus 

1 ( l - -a )  2 a (1--a)2a2 
/5(a)-P(b2k)  ~ -8- (1÷o~) - 3 2 ( l ÷ a ) N  

and the result follows, u 

In fact a point  which not only reduces the potential  by a 
constant  but also reduces the objective function can be found 
by searching the set H B. Redefine Hjo to be the hyperplane 

on which there is a point which reduces the potential  by a 
constant  and also reduces the objective function. The 
existence of such a point is assured by [ ,emma 2. Now by the 
convexity of f(z),  f (a)  > f(b2k ) > f(bio ) in the proof of 

Lemma 4 above, and thus b2k gives a reduction in potential  

as well as a reduction in objective function. Alternatively, by 
using Lemma 3 a binary search may be applied on the set H 
to yield the desired point. 

The algorithm wc describe later will optimize over 
slightly shrunk and detormed ellipsoids and we next show 
tha t  we are still assured of a sufficient reduction in potential.  
Suppose the ellipsoid E is shrunk by at most a factor of 
( l + l / N  3) giving the ellipsoid E'. l ,omma 1 still holds with 
point b redefined to be on the e]llpsoid E'N.Q since the image 
of E '  under the t ransformat ion T(z) contains the sphere, 
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N , N i z . e  z - - l ,  I~: Zz~<_(l+a/N3)2aZ/N(N-l)  + I / N '  ^. r ~ _  , 
i=l 

where c is a constant .  Let b E be the point  which optimizes 
f ( z )  over E'N.Q. And let b L and b R be the  points  which 

minimize  f ( z )  over IgLNI2(-]It L and ER(')I20tl  n respec- 
tively, where H L and H R are defined as before in t e rms  of the  
redefined b, and E L~E' and E nDE ' .  Wi th  this redefinition, 
L e m m a  2 remains  valid. Finally, let bj be the  point  which 

minimizes  f ( z )  over E j A f 2 ~ H  j where I1 l are the hyper-  
planes defined as before and ELSE'. b e m m a  4 still holds and 
a point  assur ing a cons tan t  reduction in potential  can be 
found as previously described. 

1.8. A l g o r i t h m  

We now present  an algori lhm to minimize a convex 
funct ion f ( z )  over a polytope. In ord~,r to measure  potential  
changes  the m i n i m u m  value f0  of the funct ion f ( z )  over the 
polytope is required. Since f0  is unknown, we make use of a 
sliding objective function method.  We main ta in  two parame-  
ters  HIGH and LOW which serve as upper and lower bounds  
on f0" The  o lgor i thm proceeds in stages.  At  the jth s tage  
we have  a guess gY for f0  such t ha t  L O W < g  i <HIGH, and 
dur ing  the  jth stage we measure  potential  w.r.t ,  gi" At  each 
i t e ra thm during a s tage we t ry  to find a point  t ha t  reduces 
the  potential  by a constant ,  by performing O(logN) local 
min imiza t ions  of f ( z )  over ellipsoids contained within the 
polytope. The  local minimiza t ions  are described by Prob lem 
1 and Problem 2 which are described in Section 1.4. If one of 
the  points  obtained by these local minimizat ions  reduces the  
potent ia l  as required then we proceed to the next  i teration; 
otherwise the guess gi is guaran teed  to be less than  f0  [4], 
and we reset LOW to gi" Once the objective funct ion falls 
below a threshold u, L O W < u  <HIGH, we reset HIGH to 
the cur rent  value of f (z ) .  A new stage s t a r t s  whenever 
LOW or HIGH are reset, and a new guess for f0  is then  com- 
puted.  

In O(L) stages the difference HIGH--LOW falls to 
2-O(L); the  total  number  of i terat ions in these O(L) stages is 
O(NL). Then  we keep HIGH, LOW, and the guess for f0, 
fixed, and in O(NL) ext ra  i terat ions we obtain  a point  where 
the  value of f ( z )  is at  mos t  2 -o(L) away from f0" A proof of 
this  is given in the Appendix.  We then find an exact  
o p t i m u m  as described in Section 1.7. 

A L G O R I T H M  QP 
Begin 
Let  z°=[zl  ° ,z2 ° ,x°,y °] be an initial point, such tha t  

Az°=b, Azt~<b, z°5~. 
Let LOW=2 -°(L), HIGH=2 °(L) and e=2 -°(L). 
j : - -0;  t :=0;  
/*  j and t are the  s tage and i terat ion n u m b e r s * /  
While  H I G H - L O W > c  do 

Begin 
u:=LOW+%(HIGH-LOW) 

9j:--LOW +c l ( t t lGH-LOW ) 

/*  c2 and c I are appropriate ly  chosen constants .  * /  
N / ( z ) - -g j  

Pi(z): = ~ ' ln (  ) 
i=1 zi 

While f ( z )>u  and there is a cons tan t  reduction in 
potential  Pj(z) do 

Begin 
D = d l a g ( z ~ , ' ' ' ,  z~¢) 

Let  b E be the point  tha t  minimizes  f ( z )  
over the  region defined by 
A x + y = b  
eTz = M  

tol2--N~l/2 
zVD-2z <(~ ~ j (l+l/2NSerD-lz) 2, 

- N 

Let b,, i=0 ,  -4-2 k where 0 < k <  [log( I H [ )]+1 be 
2 

the  point  tha t  minimizes  f ( z )  
over the  region defined by 

A x + y = b  
eTz = M  
e TD-lz  = e TD-Ia(I+i /N2)  

a 2 -N 1/2 
z T D - 2 z < ( (  -~ ) ( I+I /2N3)eTD-lz )  2 

N 
If one of the  points  b E b, i = 0  ±2 k 

where 0 < k <  [log( H )]+1., 
2 

gives a cons tan t  reduction in potential  then  
let z t+l be one such point  

else 
let z ~+1 be z t 

/ : = / + 1  
end 
if f ( z ) ~ u  then HIGH:=f(z)  

else LOW:=gj 
j : = j + l  

end 
If f ( z ) -HIGH>c then  

let 9j=HIGH and find a sequence of points  with 
decreasing potential  Pi  (z) unti l  f ( z ) -HIGH~c.  

end. 

1,4. Solving t, h e  local opt lmlaa~ion prohlemt* 

The  a lgor i thm described in the  previous section solves 
the  convex Quadra t ic  p r o g r a m m i n g  problem, in O(NL) 
i te ra t ions  where each i terat ion comprises a min imiza t ion  of 
the  convex quadra t ic  funct ion f ( z )  over an ellipsoid as 
described by Problem P1 and O(logN) similar min imiza t ions  
as described by Problem P2. Prob lems  P1 and P2 are 
described below. 

Prob lem P1 min f ( z )  = -~-xTBx H- pTx 
2 

s.t. Ax + y  =b 
eTz  = M  

zT D-2z _~ (r ler  D- l z )  2 

where z T = [Zl, Z2, xT,yT], N = n + m  +2, z E R N, 
z C R "  , y E R  m , A  E R  mx~ , b C R  m er=:[l ,1, . . . ,1] E R  N, 

and r '  = (a2-l-N)l/2 (1+1/2N3),  D = diag[al ,a  2, "" ",aN] 
N 

where  a=[az?az2,a3,...,aN] is the cur rent  poinb~, 

Problem P2 min f ( z )  = -~-xTBx .4- p Tx 
2 

s.t. Ax + y  =b  
eTz = M  

Hi: eTD- lz  = cj = N ( I + j / N  2) 

where z, N ,  z, y, A ,  b and e T are as defined above and 

j = ± 2  k where 0 < k <  [log( I H I )] +1. Each of the  above 
2 

problems is next  reduced to the problem 

Problem 2. min 1--zTBx + p TZ 
2 

s.t.  ( x - - x a ) r G ( x - - z a ) < 2 r ,  zER ~. 
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by elimination of the slacks y , z l , z  2. We will then show how 
to solve Problem 2 efficiently. 

Let D : diag{azl,%~,D~,D u] where D~ and D u denote the 

diagonal submatrices in D corresponding to the z and y 
coordinates respectively. We let a, and ay denote the vec- 
tors defined by a~ T :  %Tog1 and a : : e ~ D ;  1 where 
% T = [ 1 , i , . . . , 1 ] E R ,  and % T = [ 1 , 1 , . . . , 1 ] ~ R  m. To reduce 

Problem P1 first combine slacks Zl,Z z into z 3 as z3--=zl+z 2. 
On subst i tut ing ypl=bp1 - AplX where 

YP1 = z3 bpl = M - e [ b  

Problem P1 reduees to 

Problem2. rain ..~-zr Bx  + p Tz 
2 

s.t. ( x - ~ G , ) r a ~ ( ~ - ~ a , )  ~ 2 r 1 ,  ~ER ~. 

where G 1 = G H + Gxz and 

Gi l  = D ~  2 + A T D~2A 

C12 = (a,, ÷ az,)-2eA eA T -- (rl)2(aza, T + Aflaue~avr, T ap1) 

where auel T = [a[, 1/(a,, + a,,)] and 

x T = [(rl)2(bpTaaueauTeAel--bFlaue, az T) -- bLDy;2Apa]Gi  1 
G~ 

2 r  1 XGT1GlXG 1 _ T -2 1 2 T T : bp1Due ~ bp1 -F ( r )  bplayelayebp1 

Problem P2 is also reduced to the same form as Prob- 

A ,  = 1/%~ 1/%, ' eA 

c, : c[o;' b- ~'D;'A 

jAn-  c , _ e [ D ~ _ l b ] l  

Problem P2 reduces to 

Problem2. min z T B z  + p~Z 
s.t. ( x _ z a , ) 7 " G ~ ( x - z a )  _~ 2r2, xGR" ,  

where G z : G21 + G2z and 

G21 : Dz -2 + A T D~2A 

01 ,I< 

XG~ = G ~  1 (A T D~lbpz)  

2r 2 : c 2 ( a 2 + N )  T -2 
i N2 -- bp2Dyz bP2 

1.5. Opt imlz lng  Convex Quadra t i c  f l lnetions over Ellip- 
soids 

We next show how to efficiently solve the problem 

Problem 2. min xT Bx q- pT x 
s.t. (X--xG)T G(x--ZG) _< 2r, z E R "  

By application of a linear t ransformat ion the above problem 
may be converted to the following form; 

Problem 3. min xlTxl + QT z 2 
s.t. ( z - z 0 ) r A ( z - z 0 )  ~ Zr 

where A is a diagonal matrix with positive entries and 
x T = [ x l T , x 2 T ] , x l c R k , x 2 C R  n-k. We assume that  the 
opt imum to Problem 2 lies on the boundary of the ellipsoid 
( z - z a ) r G ( x - z a )  _~2r, xERn;  otherwise ./3 is necessarily 

non-singular  and the opt imum is given by z =  - B - l P  
2 

To solve Problem 2 we first characterize the solution to 
Problem 3. By the theory of Lagrange multipliers the 
opt ima to Problem 3 are given by the solution to the set of 
equations 

(x -x0) r A(~ --~0)=2r (2) 

Let A=diag(Xl,X2, • • • ,X,~). This gives 

zi=~Xi(xi--~0i ) i= l ,  • • • ,k 

q j= .X i (~ j - z0~  ) j = k + l ,  • • - ,n. 

Substi tut ing into the ellipsoid equation (2), gives 

~ ( u ) = - S . - -  ~ += 2.; ~ - -r .  
2 i=1 (l--II~ki) Z j=k÷l II Xj 

Firstly note that  when x minimizes the objective function # 
must  be negative. Suppose otherwise, i.e. that  tz is positive. 
Then z i and xi-Xo¢ have the same sign for all i and thus 

decreasing z i decreases the objective function while staying 
within the ellipsoid defined in (2). Moreover g'(#) is a mono- 
tonically increasing function of # , for # d 0 .  Thus a solution 
to ~(~u)=r can be obtained by a binary search on # , /u(0. 
Let ~(#*)=r , for  # * d 0 .  We next show that  it suffices to find 
a #' s.t. # * ( l + l / 2 n  3) ( #' ( I.z*. This choice of # ensures 

3 - - i  - -  tha t  r / ( l + l / 2 n ) <  ff ' ( /z)~r,  and the corresponding z 
optimizes the objective function over the slightly shrunk 
ellisoid, (z--z0)TA(x--z0) _< 2g ' ( j ) .  This corresponds to 
optimizln~ over the slightly shrunk ellipsoid 
(~-~0)  r c ( ~ - ~ 0 )  < 2 ~(u ' ) in  Problem 2. 
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Now, as shown in section 3, when both Problems P1 
and P2 are reduced to problems like Problem 2, G is 
obtained by intersecting the ellipsoid E and then projecting 
onto a subspace. Suppose E is shrunk by some factor q. 
Then El-l/?, where f2 is an affine space, is shrunk by at least 
"7, '7>'7, and the ellipsoid which is the projection of E A D  
onto some subspace is shrunk by the same factor if'. Thus 
optimizing over (z-ms) T G(Z-Xo)  _< 2 g'(#') corresponds to 
optimizing over E ' ( - ~  in Problem P1 and over E ~ N i 2 N H  i in 
problem P2, where E' is obtained by shrinking E by a factor 
of at most (1+1/2n3). As described in section 1.2 these 
optimizations suffice to find a sufficient reduction in poten- 
tial. 

We next note that the value of the Lagrange multiplier 
# remains invariant under linear transformations since the 
corresponding equations characterizing the multiplier # are 
equivalent. As Problem 2 and Problem 3 are related by a 
linear transformation, it suffices to find a #' such that 
# * ( l + l / 2 n  a) ~ #' < #*, where #* satisfies 

Bz  + p = # G ( z - z a )  

In our algorithm the value of #* is upper and lower bounded 
by 20(L) and 2 -O(L) respectively. So to obtain the desired 
approximation #' to #* in Prob!em 2 we simply solve the sys- 
tem of equations 

2Bz + p = 2 p G ( z - X a )  

for O(logL) values of #. The complexity of this procedure is 
O(na(logL)) arithmetic operations, using standard linear 

equation solvers. 

Using this solution to Problem 2, the algorithm for 
Quadratic programming requires O(naN(logN)( logL)L)  
arithmetic operations. 

1.6. Improving the complexity 

In this section we show how to reduce the complexity of 
the Quadratic Programming problem by solving slightly 
modified versions of problems P1 and P2 during each itera- 
tion. The modified problems differ in that the quadratic 
form z T D - 2 z  changes to zTD~2z  in both the problems 
where D ~ = D A and A=diag[Al ,  " " " ,,dg], A~C[1/2, 2 ]. 
and a is replaced by a/2. The quadratic constraint now 
defines a slightly twisted and shrunk ellipsoid. By the results 
of section 1.2 a constant reduction in potential can still be 
found. Let D~ = d i a g [ d ~ , ' ' "  d" , aN ] and 
D i • i, i " = d m g [ z l z 2 , ' ' ' , z ~ ¢ ]  he the matrices D~ and D at the 
ith iteration. ( i i . . z =[zl, • ,z~¢] is the point at the beginning 

N i+1 1 zj 
of the ith iteration.) Moreover let a i : - ~ - - - ~ - .  Initially 

D,~ = D o and D~ +1 is obtained from D~ as follows 

z~+l 
If a i d h j E [  k/2 " - '  N/2zj+ll then 

let d i+l -- i Zij -- o-idAi (Type 1 Change ) 
else d i+lz~j ~ ai diAj --t~t zi+ij -- ai d~j ) (Type 2 Change ) 

The total number of such changes has been shown to be 
bounded by O(Ni 'SL)  throughout the execution of the algo- 
rithm in [4]. We use this fact to improve the time complexity 
of the Quadratic Programming algorithm. In our algorithm 
we express D~ as D H + DL, where D H is a high rank matrix 
and D L = d i a g [ d L t , ' ' ' , d L N  ] is a low rank matrix which 

accumulates the type 2 changes. Initially DH=D ° and DL=O. 

At the end of the i th iteration D H and D L are updated as fol- 

lows: 

Procedure Update DH, D L 

D H = criD H 
D L = aiD L 

Z ~+I 

then alL, = dL~+(4  +'  --  ~,  d ~ )  

Now in order to solve the modified problems P1 and P2 
we proceed as in the previous section and reduce each of the 
problems to Problem 2. The matrices in Problem 2 
corresponding to Problem P1 and P2 are G t = G u . + G n  and 

G2=G12--I-Q22 respectively. Note that G)i=G21 and G12 and 
G22 are constant rank matrices. Let GI1 denote the matrix 
G n in Problem 2 at the ith iteration. The decomposition 
D ~  = D  H + D  L induces a decomposition of G~I into 

G ~ i = G H + G  L . where 

G~f = O f f ,  2 + A T Dffy2A, 

G L = D ~  2 + A T D ~ 2 A  

and D/_/z, DHy are the entries in D H corresponding to the x 
and y coordinates respectively. Similarly DLz, DLy are the 
entries in D L corresponding to the x and y coordinates 
respectively. Now in the ilh iteration G n changes by a scale 
factor only and each Type 2 change in D L induces a rank one 
change in G L. We will show that as long as G L has low rank 
and some matrices related to G/./ have been precomputed, 
Problem 2 ( and hence Problem P1 and Problems P2 ) can 
solved quicker than before. Unfortunately this procedure is 
not economical when the rank of G L exceed:s a certain thres- 
hold. At this stage we reset DH, G H, D L, Gi, and recompute 
the required matrices. A value for this threshold ( which is 
= N  2"~/3) is obtained by balancing the number of operations 
reqired to recompute the required matrices and the number 
of operations required to solve Problem P1 and O(logN) 
Problems P2. 

We need to precompute ( using O(n 3) operations ) the 
following matrices related to G H 

(1) The Cholesky factorization G H = LL:r and L -1 where 
L is a lower triangular matrix. 

(2) The tridiagonaliztion (L-1)B(L-1)  T = QTQ T, where q 
is a unitary matrix and T is a tridiagonal matrix. 

(3) The products ( L - t ) T Q  and ( L - I ) T Q A .  

We next give a modified algorithm assuming that the 
optimum value of the objective function is zero; the sliding 
objective function method may be incorporated in a manner 
similar to that in the algorithm given in section 1.3. 

Modif ied  A l g o r i t h m  

Let z ° be an initial point such that 
A z  ° = b, A z ° < b ,  z°>0 
D H: =D ~ =D o 

DL :=O 
o _ o GH=G,x -G21, e=2 -O(L), 

Compute L, L -1, Q, T, (L-I)T Q, (L-t)T QA 
While f ( z )>E and there is a constant reduction in 

N Sin(f(z)) do 
i=1  zi 
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Begin (ith iteration ) 
Find a point that decreases the potential by a constant 
by solving Problem P1 and O(logN) Problems P2. 
Each problem is solved by reducing it to problem 2 which 
is solved approximately using preeomputed matrices. 
Update DH~ D L. 
If (rank of DL) > threshold ( = N 2"5/3) then 

DH:= D i+~, DL := 0 
Compute L, L -~, Q, T, 

(L-1)T Q, (L-1)T QA 

end 

In order to find a point that assures a reduction in 
potential in the above algorithm we need to solve the follow- 
ing form of Problem 2, 

min-~-x T Bx  -4- p T x 
2 

s . t . (x--~c)rG(z--xc)  < r, ~eR =. 

where G = G H + G L + Gq. Gq is a matrix with constant 
rank and we are given the Cholesky factorization GH=LL T, 
the tridiagonalization (L-1)B(L-~)  T =  QTQ T and the pro- 
ducts ( L - 1 ) T Q , ( L - 1 ) T Q A .  Moreover G L is a matrix of low 
rank and can be expressed as 

G L D ~  2 + A TD -2A = Ly 

where DL~ and DLy are diagonal submatrices of D L 
corresponding to the z and y coordinates. Each has at most 
N 2"5/3 entries. G L + Gq can thus be expressed as 

G L -b Gq = U 1 V1T -b A T U2 V2TA 

where U1, V1, U2, V 2 are matrices with n rows and 
t = O ( N  2's/3) columns. On applying the linear transformation 
w = Q T L T x ,  Problem 2 becomes 

min w T Tw + p~Tw 

s.t (w -- w~)r(I  + UzVaT + U4Y[)(w -- w~) <_ r 

where pw T = p T ( L T ) - i Q ,  w a = Q T L T z e  and 

U 3 = Q T L - 1 A T u 2 ,  V 3 = Q T L - 1 A T v 2 ,  
U 4 = Q TL-1 UD V 4 = Q T L - 1 V 1 .  

Note that having precomputed the products 
(L-1)T Q and (L-~)T QA,  U 3, V 3, U,, V 4 can be computed in 
O(nt)  arithmetic operations. 

A solution to the transformed problem is obtained, 
using the method outlined in section 1.5, by solving the fol- 
lowing system of equations for O(logN + logL) values of/x. 

2 Tw + p~ = - 2 . ( 1  + U3V3 T + U 4 v 4 T ) ( w  - WG) 

= - 2 . ( I  + u ~ v ( ) ( w  - w~) 

where U5 T = [U3 T, U4 T] and V5 T = [Va T, v4T]. Let 
T + ~ I = R  1 and let T + ~ I + # U s V s T = R 2 .  The above 
system of equations can be now rewritten as 

2R2w = - p ~ + 2 ( R 2 - T ) w  c 

and is solved as follows, 

(1) Compute R~ 1. Since R 1 is tridiagonal this can be done 
with O(n 2) arithmetic operations. 

(2) Compute R a = R ~ - i U 5  and R 4 = R ~ I V 5  by solving 
RlW = U s and R l w  = V 5. This requires O(nt)  arith- 
metic operations. 

(3) Express 

R~ -1 = R~ -1 _ #R~-IU~{I + #VaTR~IUsl-iVhTR~ -1 
= R~ 1 _ #RzR~- iR4  

In this expression VsTR~'ius is computed in O(nt  2) 
operations. Then computing R~ -1 requires an additional 
O(t  3) operations. R~l is  not computed explicitly but 
left in the second form. 

(4) Finally the solution w is obtained by postmultiplying 
the expression for R~ "1 by the vector 

1 ( R 2 - T ) w  c in O(n z) operations. - ~ - P w  + 

The total number of arithmetic operations required in 
the entire algorithm are 
0 (n3N2/3L + nNS/3NL (logN + logL ))=O (N3"SV(logN + logL )L ) 
since 

(1) It requires O(n 3) operations to compute L,Q, T and the 
associated products. These computations are performed 
O ( N i " S L / N  2"s/3) number of times. 

(2) At each iteration O(n t2 )=O(nN ~/3) operations are 
required to solve each of the O(logN+logL)  modified 
Problems 2. 

1.7. Finding an exact optimum 

In this section we describe how to find an exact optimal 
solution once we have a solution that is very close in objec- 
tive function value to the optimum. Note that there is a 
point with rational coordinates which minimizes the convex 
quadratic form over the polytope. Consider a maximal set of 
inequalities, say A l x ~ b  1, that are satisfied with equality at 
an optimum point. Then every solution to the problem 

min -~-xTBx + p T z  
2 

s.t. AlX = b 1 

is a solution to the original problem. Using the theory of con- 
vex programming [10], the solutions to the above problem 
are characterized by the following system of equations, 

Bz + p  = A / X  

AsX = b 1 

the solution of which has the desired rational coordinates. (k 
is the Lagrange multiplier.) 

We first consider the case when the matrix B in the 
quadratic form is positive definite. Let xov t be an optimum, 
let z =zopt+AXov t be a point in the polytope, and let 

T ~_xoptBxop T T x ~ x T B x  + z = + p + O. Since the P 0!0t 

polytope lies entirely to one side of the hyperplane which is 
tangential to the surface defining the objective function at 
the optimum point, (Bzop t +p}Tz  _>(Bzopt +P}rZ0pt for 
every point x in the polytope. Thus it follows that 
(~%,)rB(~%~)  <e ,  and 

Hz~xop t ]122 ~ O/(smallest eigenvalue of B ) 

1 
Since the smallest eigenvalue of B is greater than - -  

n2L ' 
choosing O < 2 -(5n+2+l°g2n) _ ensures that liAXop t 112 < 2-(2L+1). 

We find an x, a required approximation to the optimum, by 
letting e=O in the algorithm in section 1.3. The optimum 
point is found by using continued fractions to jump to the 
unique rational point, with denominators and numerators 
less than 2 L, closest to the point obtained after execution of 
the algorithm in section 1.3. 
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Next suppose t ha t  the mat r ix  B in the quadrat ic  form 
is positive semi-defini te .  In this  case the  o p t i m u m  point  is 
no t  unique bu t  for any two op t ima  Xop t and Xopt ~, 
Bxo~ t = Bxopt ~. Since there exists an o p t i m u m  point  z0~ ~ t ha t  
has  ra t ional  coordinates,  the  numera t o r s  and the  common  
denomina to r  being integers less than  2 L, Bxopt and p Txopt 
also have rat ional  coordinates with the  numera t o r s  and the 
c o m m o n  denomina tor  being integers less than  2 2L as B and 
p have integer entries.  Let z = Zo~ t + AZopt, where Xo~ t is an 
op t imum,  and let 
! x T B x  + p T  x 1 T = -~-XoptBXop t -}- p T xop t A~ O. Also let 

Xop t = Xapti ~ Zapt~ ~ x = x 1 --}- x 2 and z~zop t : z~7opt~ -~- z~x.Olpt ~ 
where Xo~h, x~ and Axo~q are in the  row space of 13 whereas  

Xopt~ , z 2 and AZop h are in the null space of B.  Then  
1 T -xlTBZl -~ pTx  = ~xoptBxoM ~ + pTxop t + O, and by an 

a r g u m e n t  s imilar  to t ha t  in the previous case, 

I[ZiZoph[[: ~_ O/(smal les t  non-zero  eigenvalue of B ) 

An o p t i m u m  point  is found as follows. F i rs t  find an x such 
t ha t  O < 2 -(TL+al°g~N+2), and compute  Bxov t by evaluat ing 

Bz and using the  method  of continued fractions to find BXop t. 
Similarly,  compute  pTxop t f rom pTx .  An o p t i m u m  point  is 
then  a solution to the following feasibility problem. 

Bx = Bxop t 
pTx  = pTxop t 

A x < b  
z > 0  

1.8. Prec is ion  o f  A r i t h m e t i c  O p e r a t i o n s  

In this  section we show t ha t  it is adequate  to perform 
ar i thmet ic  operat ions  to a precision of O(L)  bits. We  asume 
tha t  the  polytope defined by Az  _< b, x->O, is non-degenera te  
(if not  we can work with the  polytope Az  <b +2 -O(L), x >0  
which is guran teed  to be non-degenera te  [7]). 

Initially, we s t a r t  with a point  in the interior of the  
sl ightly modified polytope 

A x _< b _ flo , x >/3 0 , flo = 2 - k , L 

At  the beginning of the i ~h i terat ion we have a point  z i and a 
slack vector yi located in the  polytope p i  defined by 

Ax + y = b _f l i  , x1 -> 2-k2L , YY > 2-k2 L , 2-k~ L _> ~i _> 2-k2L 

During the i th i terat ion we do local opt imizat ions  over ellip- 
soids contained in the polytope p i  and obtain a point  (z ' )  ' 
and a slack vector (yi), which reduce the  potential .  (zi) I and 
(yi), are still in the  polytope p i .  The  components  of (x~) ' 

and (yi)~ are rounded off to mult iples  of 2 -kzL to obtain z i+1 
and y~+l. zi+l together  with the slack yi+l may  no longer lie 
in the  polytope pi .  However, x i+1, yi+l satisfy 

Ax  + y  _<b _f l i  +(n+l)(aij)m~x2-k2L, where (aii)max is the  
en t ry  with the  largest  magn i tude  among  all the  entries in the  
cons t ra in t  ma t r ix  A .  So we can find fli+l such t ha t  

0 < f l i  _ f l i+ l  _< (n+l)(aii)max2-k2L. 

The number  of i terat ions is bounded by 7NL for some 
cons tan t  q, and we choose k 2 so t ha t  the final point  at  the  
end of the last  i terat ion is within the  original polytope 
Ax  _< b, x ->0. We choose k 1 so tha t  the o p t i m u m  value of 
the  objective funct ion over the  modified polytope 

Az _<b _rio, x ->~3 °, differs f rom the o p t i m u m  value over the  
original polytope Ax_<b, x~_O, by at  mos t  02 where 

0 = 2  -TL+l°g:N+2. Once we have a point  where the  value of 

the  objective funct ion differs from the o p t i m u m  value over 
the  original polytope by at  mos t  O we can use the  me thod  
described in Section 1.7 to find an exact  op t imum over the  
original polytope. So let us suppose t ha t  the  value of the  
objective funct ion at  x i differs f rom the o p t i m u m  value over 
the  original polytope by at  least  O. Then~ by a series of local 
op t imiza t ions  over ellipsoids contained in the  polytope p i ,  
we can find a point  (xly, and a slack (yi),, which decrease the  
potent ia l  by a constant ,  and the  rounding process changes  
the  potent ia l  by a negligible amount .  

We choose M in the  equat ion eTz  = M  large enough so 
t ha t  the  slacks z 1 and z z are always greater  than  or equal to 
n32 L. Since the  largest  value of any co-ord ina te  of a feasible 
point  z and slack y is hounded  by 2 L, the  relative changes  in 
z 1 and z 2 are negligible, and so z 1 and z 2 have a negligible 
effect on the  potential .  

We shall now bound the condition n u m b e r s  of the  
mat r ices  describing the ellipsoids over which local opt imiza-  
l ions are performed.  During each s tage  we have to solve 
Prob lem P1 and Problem P2 as described in Section 1.4. 
P rob lem P1 reduces to 

1 min - - x T B z  + pTx  
2 

s.t. (Z--ZG,)ral(z--zc) < 2q, ~ER' .  

where  G 1 is the  mat r ix  describing the  projection of E N D  , 
where E = { z : e r z = M } ,  ~ = {z:Az + y = b }, and 
z T = [zT, yT,  zl ' z2], onto the space of the  t ' s .  

As the  condition number  of the mat r ix  describing an 
ellipsoid does not  increase on intersect ing the ellipsoid with 
an affine space t c ( E N ~ ) < a ( E  ). Moreover,  

a(G1) _< ~¢(EA/7)(1+ largest  eigenvalue of A TA)  

a (E)  is bounded as follows: Let a be the  cur rent  point,  

a(E)_< largest  dis tance from a to boundary  of E 

The  largest  dis tance from a to boundary  of E is at  mos t  
n2 L. Let b be the point  closest to a on the boundary  of E .  
Suppose [e T D- lb  - e T D - l a  ]_~l/n, then  

Ha--b H2 _> 1/(n IID-le 112) _> 2-k'L In2; otherwise 

I[a-b[[ 2 -> (HP-lel l2/  e r  D - l a )  -> c~2-k~L /r,: 2, since T(a) is 

the  center  of the  sphere,  S, in the t rans formed  domain ,  and 
b lies on the boundary  of this  sphere.  T h u s  
it(E) ~ n32 (k'+l)L. 

Problem P2 is also reduced to the  same form as Prob-  
lem 2. Prob lem P2 reduces to 

1 min  - -x  T Bx + p T x 
2 

s.t. (X--:rG~)T G'2(X--XGz) < 2r2, x E R  n. 

where G 2 = G21 + G22 = D Z  2 +ATD~-2A  + G22 , D~, and 
Du are as defined in Section 1.4. Since G 2 is the  sum of posi- 
tive semidefinite matr ices,  the  smal les t  ei genvalue of G2_> 
smal les t  eigenvalue of DZ  2. Hence 

tc(G2)_<l] G2{I 2 / (  smal les t  en t ry  of DZ  2) 

< 0(2(14k2+2) L 
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Having bounded the condition number  of the  ellipsoid 
matr ices ,  we next  show t ha t  O(L) precision is adequate  to 
give a sufficient reduction in po t en t i a l  As described in Sec- 
t ion 1.4 at  each i terat ion we solve the  following problem 

min -~-xTBx ÷ pTz 
2 

s.t.  (z--ze)T(GH+GL +Gq)(z--zc) < 2r, xER ~. 

Firs t  the  Cholesky factorizat ion GH=LL T and L -1 are com- 
puted.  Next L-1B(L-1) T is tr idiagonalized to T using uni- 
ta ry  matr ices  whose product  is Q. The  above computa t ions  

are performed using a lgor i thms in [2, 8, 9 ] with  kaL preci- 
sion. Let Qc, Tc , Lc, and (L-1)c, be the  computed  matr ices .  
The  computed  Q and T are used to t r ans fo rm the above 
problem to 

rain 1--wTTcw +p,~Tw 
2 

(W--WG,)T (I ÷Uc Vc ÷Rc)(W-WGo)<r 

as in section where pw = p r L - 1 Q  T. This  problem is 

equivalent  to 

Prob lem P* min -~-wT(T +ET)W +(pw+z2p,~)Tw 
2 

( w --w e +A w G ) T (I+ UV+R +E C )(w --w e +A w a )<r 

where EG, E T are small  error matr ices  and Apw , zSw a are 
smal l  error vectors  [8, 9]. Problem P*  is in tu rn  equivalent  
to 

min -LzT(B+AB)z  +(p+z~p)T x ,  xER" 
2 

s.t. ( ~ - ~  + ~ J ( % + ~ L  + ~ + ~  ~ ) ( ~ - ~  +~G)_<2r 
The 2 - n o r m s  of the error matr ices  AB. ZIG, and the error 

vectors  Ap, zSxv, are bounded by 2 (k~-k~')L for some cons tan t  
k 5. We briefly sketch how the bound is obtained [8, 9]. We 
have 

IIz~ IIz _< II(L-X)jlll~ IIET 112- 
Since [l(L-1)~-xll2 z < 211G ~112, [lET II <O(nn21lL-~ll~ lib I1~ 2-kaL), 
we get IIZ~B[[2<O(2(='~'+s-~')L). A~ 

II,~p 112 _< lip 112 IIL-ql~ 2 -kfL ~ 0(2 (k'+3-ks)L) 

Also 

Ilza~ 112_<O(IIE~ IlzllL I1~) 

since 

_~ 0 (2 (26k'+g-ka)L) 

IIEcll~ _~ O(IIcHII~ + IICLII~ + IICqllz) IILjHI~2 -k'L 

< O((,¢(GH) + IIGLll2 + IIG, 112))2 -k'L) 

Solving the  problem P* gives a point  z e = z + A z  where 
Az is the  error introduced in solving the sys tem of equat ions 
(T+#(I+U¢V~+R~))w=r and in t rans forming  the point  
back to the  original domain .  T hus  

~a~_<-211cIl~ IIA [124 p32-k'L + n2[IGII2 Ilzaqltz 
_< 0 (2 (Tt~kt+ lS+ 31k'-k')L ) 

as 2k4L_>lp>2-k& and AQ is the  error in each of the  un i ta ry  
matr ices  used in the  tr idiagonalization.  The point  z gives a 
sufficient reduction in potential  since the  ellipsoid 

corresponding to GH-FG L-4-Gq-4-z~ G is a slightly twisted and 
sh runk  version of the  ellipsoid defined by GH+GL+G q for a 
sui table choice of k 3. Also Ax is of a much  lower order t h an  

2 -k'L for k3>77kz+20+4k 4 and then the  point  z c gives a 
sufficient reduct ion in potential .  

2. M u l t l e o m m o d l t y  Flows 

2.1. I n t r o d u c t i o n  

We consider the problem of finding a mu l t i commodi ty  
flow in a directed network (V,E) [3]. The  network has  a set 
of sources S and sinks T, and it is required tha t  source S i 
send f i  uni ts  of commodi ty  i to sink T i th rough  the net- 
work. Moreover,  for each edge e i there  is a capacity c i which 
upper  bounds  the total  of all the commodi t ies  tha t  may  pass  
th rough  t ha t  edge. For each of the sets  V, E, S and T, we 
shall  use the corresponding lower case letter to denote the 
size of the  set. 

For each source-s ink  pair (Ti, Si) we add an edge 
directed from T~ to Si, with an upper bound of f i  on the flow 
of commodi ty  i th rough  this  edge. The goal is to find a flow 
such tha t  the  flow of commodi ty  i in edge (Ti, Si) equals the 
capacity f~. No augmen t ing  pa th  a lgor i thm is known for 
this  problem. Tile mul t icomnlodi ty  flow problem is formu-  
lated as the following linear program.  

Prob lem MF. 

min pTw = ~ Y i ,  
i=1 

s.t. APx = 0  ... Flow Conservat ion 
Cx +ly - z c  = 0  ... capacity cons t ra in ts  

nl e 

~ z ~  + ~ y i + z  = c i + l  
i ~ 1  i = 1  i = 1  

• ~0 ,  y ~ 0 ,  z ~ 0  
where 

zER nt is the  vector of flow variables. For each edge not  
incident  on a source or sink vertex there are s variables 
each corresponding to one of the s commodit ies;  for an 
edge incident  on S~ or T i there is exactly one variable 
corresponding to commodi ty  i, and the first s co-  
ordinates  of z correspond to the  flows in the  edges 

(Ti, Si), i = l , . . , s ,  yER e is the  vector of slacks. 
to t  =~zT ,  y r ,  z), and wER br where N = n t + e  + 1 .  c is 

the capaci ty vector upper bounding z. Let n 2 be the  
number  of edges incident  either on source or sink ver- 

tices, a n d  n 3 = e - -  rt 2. (J = C1 

C ER e ×hi, I ER n2×n2, C1ER n'3 :< s~t3, and the i th row of 

C 1 has I ' s  in the positions s ( i - 1 )  + 1  through s i, and 

O's in the  remaining positions. A is a block diagonal 
ma t r ix  with the i th block being the incidence mat r ix  of 
the  directed graph induced by the vertex set consisting 
of S i and the  vertices reachable from Si, and P is an 
appropr ia te  pe rmuta t i on  matr ix .  

If a required flow does exist then the m i n i m u m  value of 
p r w  is zero, and a solution to Problem MF gives the  
required flow. 
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We adapt  Karmarkar ' s  linear programming algorithm 
[4] to give a procedure requiring O(s3"Sv2"heL) ari thmetic 
operations performed to a precision of O(L) hits, where 
L = ]og(dmax) + l o g ( ~ c i )  + logN. d in  x is the largest abso- 

i 

lute value of the determinant  of any square submatr ix  of the 
constraint  matrix in Problem MF. To get an initial strictly 
interior feasible point, we s tar t  with small positive flows of 
each commodity  in each edge such that  flow conservation and 
capacity constraints  are satisfied, and the flow in an edge 
(Ti, Si) of commodity i is less than fi" 

Applying Karmarkar ' s  algorithm to Problem MF 
reduces the global problem to a sequence of O(NL) local 
optimizations.  Since the optimal value of the objective func- 
tion is unknown, a sliding objective function method is 
employed without  increasing the time complexity. In Section 
2.2 we show how to reduce the cost of local optimizations by 
eliminating capacity constraints  and inverting a matrix of 
lower dimension. In Section 2.3 we show how the amortized 
cost may be further  reduced to give the desired bound on the 
total number of ar i thmetic operations. In Section 2.4 we 
describe how an opt imum point may be obtained once we 
have a point  where the objective function value is close to the 
opt imum value. In Section 2.5 we show that  it is adequate to 
perform all ar i thmetic operations in the algorithm to a preci- 
sion of O(L) bits. Interestingly enough, the minimum cost 
mul t ieommodi ty  flow problem can also be solved in the same 
t ime complexity. The approach outlined in Sections 2.2 and 
2.3 extends in a s t ra ightforward manner to provide efficient 
solutions to similarly s t ructured linear programs,  for exam- 
ple, those arising in problems with generalized upper bound- 
ing and block angular problems [11. 

2.2. Reducing cost  of  local opt lmlza t lons  

As described in [4], the algorithm generates a sequence 
of points w°,w 1, .... where w ° is an initial feasible point  as 
described before, w k+l is obtained from w k by a local optim- 
ization as follows. 

(1) Find a direction w d by solving the local optimizat ion 
problem 

rain p T D w 
APD~ z = 0 

CDzz +Dyy - c z  = 0  
e T w  = 0  

wTw < 1 

where D=diag(D~,D~,l), D~ = dlag (Zlk,Z~,...,znkl) , 

D ~ = d i a g ( y ~ , y ~ , . . . , y ~ ) ,  and e r  =(1 ..... 1). 

(2) Compute  w ' = ( e / N )  + (~w '~/N),  where N = d i m ( w ) ,  
and ~ a constant.  

(3) w k+l = ( ~ c , + l ) ( D w ' / e T D w ' ) .  
i 

The solution w d is given upto a scale factor by 

w d = D~p~ + BT(BQ-1BT)-IBQ-1Dzp~ 

[[ + D~ CT D~-2CDz -Dz  CT D~-2c] 

where Q = [ _cTD~_2CDz i+cTD~_2e 1, 

[APD  o I 

and e ":r =(e~', el ,  1). To express w e in the above form, we 

first eliminate capacity constraints  by subst i tut ing for the 
slacks y. This t ransforms the sphere w T w <~ 1 into the ellip- 

soid (z T, z ) Q  ( : )  _< 1, and the dimension of the constraint  

matrix is reduced from s¢ to sv at the cost of slightly 
increasing the complexity of the quadratic constraint.  The 
equation for w d is then obtained using Lagraage multipliers. 

We now describe how to compute the direction w d. We 
note tha t  matrices are not  explicitly computed unless so 
stated.  We shall show how to efficiently corapute an expres- 
sion, comprising addition, subtraction,  and multiplication, of 
a constant  number of matrices, for Q-1 and a similar expres- 
sion for (BQ-1BT) -1. Then the direction vector w ~ may be 
obtained using the above equation for w d. In the following 
computat ions we shall repeatedly use the formula [2], 

(A + UVr) -1 = A -~ - A-~U(I  + Vr  A - 1 U ) - t V r  A -1. 

1. Q can be expressed as Di+U1V1T where D 1 is a block 
diagonal matrix,  with each block of dimension at most  
s ,  and UiV1 r is a matrix of rank 2. Specifically, 

D1 = [D0 n d01/, where Dn=I-4-DzCTD~-2CDz, 

2. 

2.0. 

3. 

4. 

0 . . . 0 1  ] 
u1T = [--c TD~-2CD, J' dl = l + cT D~-2c, and 

D~i 1 is block diagonal and can he expressed as 
D~ 1 = I-DzCTD~-ID~2D~-ICDz, where D w is a diag- 
onal matrix,  in O(se)  operations. Then D~ -1 is /o: 0 },n 
expressed as d~ 

Q-1 can then be expressed as Q - l =  D~- i_  U2Usu4T, 
where U~=D~IUi, U~ -1 = I +  V1TD~iU1, and 
U a =D~ 1 V1, in O(s e) operations. 

We next note tha t  
BQ-1B T = BD ~IB T + (BU2 U3)(BU4)T = A 2 + Us V5 T, 

where A 2 =  [A01 d03], A i = A P D z D ~ I D z p T A  T 

f0 01 
b2 d 3 = blTDHlb1-4- d22d1-1 , uhT = t](BU2U3) T 

f b : ]  
Y5 r = [ 0 . . . 0 1 | ,  b2 T =((APDzPhlbl )  T, 0). 

(BQ-1BT) -* can now be wri t ten as 
(BQ-1BT) -1 = A~ -1 _ A~-IUh(I + vsT~t~-lus) -~ VhTA~ -I . 
Once D ~  1 is available as described ~bove, A 1 can be 
computed in O (s 2 e ) operations. We have 
A 1 = A  11 - A  12, where A :.1 = A P D z  2P T A T  

2 T - 1  2 - 1  2 T T A12=APD, C D~ D,vD ~ CD, P A . APD, is a 
weighted graph incidence matrix with O(s e) entries, 
hence A n has O(s e) entries and is computed in O(s e) 
operations. An entry in A12 is either the product  of the 
weighted flows of two commodities in an edge, or for a 
fixed pair of commodities the sum of such products 
corresponding to all edges incident on a vertex. So A12 
is computed in O(s2e) operations. A ~  1 and A ~  1 are 
then computed in O(s 3 v 3) more ari thmetic operations. 
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5. A~-IUs, A~'IV~, and (I + VhTA~-iuh) -1 require O(s2v 2) 
operat ions  once A~ -1 is available, and the direction vec- 
tor w d is then  obtained in O(s2v2+se) addit ional  
operat ions,  using the  computed  expression for 
(BQ-1BT) -1. 

2.8. R e d u c i n g  t he  a m o r t i z e d  complex i ty  

The  complexity of Problem MF may  be fur ther  reduced 
by using an approximat ion  Dza to D in the local opt imizat ion 

problem solved a t  each i terat ion.  Let w ~ be the point  at  the 
end of the  ( k - l )  a i terat ion.  At  the s t a r t  of the  k th i terat ion 
Dz~ is computed  as follows. 

(1) P z ~ : = ( g  -1 ~(w~k/wlk-1))Pza .  
i 

(2) For i = 1 , 2  ..... N ,  
if ((Dz~), i < wik/'x/2 or (Dzi)i i > k / 2 w i  k) then  

(O~),  := # .  

(3) If ( k is a mult iple  of [ghl  ) then  
Ozi :=  diag(wlk,w~ . . . . .  w~). 

Modifying an element  of D a in Step 2 leads to a rank one 

change in A 1 and hence in A ~  1 , and this  change can be com- 
puted  in O(s2v 2) operations.  We reset D a in Step 3 since 

jus t  modifying Dzi in Step 2 leads to an excessive number  of 

rank  one changes in A 1. Whenever  Dza is reset, we reeom- 

pure A ~  1 as described in the  previous section in O(s3v 3) 
operat ions.  Once A~ -1 is available, the direction vector w ~ 
can be obtained in O(s2v ~) addit ional  operat ions as 
described in Section 2.2. We note t ha t  even though  DLI is 

used ins tead of D, the  number  of i terat ions is still O ( N L )  
I4]. 

L e m m a .  Between successive reset t ings of D za in Step 
3, the  total  number  of modifications to D a in Step 2 is 

O (N26), if 6 < 1/2. 

P r o o f .  Let n i be the number  of t imes  (Da)i i is modified in 
Step 2 between successive reset t ings in Step 3. Let 
d/k = ( g  -1 X(wik/w/k-l))wik/w/~-1, h~ = ln(dik), jk  the set of 

i 

those indices i such tha t  [d/k--l[ > (8 IN6]) -1 , 

ri ={ k :O<_k_<[NS], i E Jk I, O,={ k :o<_k<_[N6l, i f~ J t I. 
As (Dza)i i is modified whenever  the product  of succes- 
sive (d,k)'s exceeds VY or falls below ~/~/~, we have 

n i ln'X/2 <_ 22..,' " - 

/e=~ k As S /h / l<  1/2 ,  n i ~ 1  implies 
k E O  i 

n~lnV~<2 S Ih21" 
k C~r i 

Also, S Ih21 

< S I h ~ - ( d ~ - l ) l +  S Id2-11 
i = l  i ~ J i  

In [4] it  is shown tha t  (i) ~ ( d ~ - l ) 2  < fl~, for some 
i 

N 
cons tan t  fl, (ii) ~ [ h / k - - ( d / k - - 1 ) l <  fl~ 

i=1 2 (1--fl) ' and 

~ ( d ~ _ l ) 2  ~/32 implies ~ Id/k--l]_~ 8[N6]fl. 
i i6 J~ 

N 
So, S n,. < ~ z~ [hal = O(N26fl). 

i = l  k = l  i ~ J  ~ 

From the L e m m a  it follows t ha t  the  total  complexity is 
OIN1-6(s v)3L + gl+~(s v)2 L ) operations.  Choosing 
N o = (s v) °s gives the  desired complexity of O(s3Sv2"Se L) 
operat ions  as N = O(s e). 

2.4. J u m p i n g  to  t he  op t lma l  so lu t ion  

In this  section we describe how to obtain an opt imal  
solution to the  mul t i commodi ty  flow problem, once we have 
a feasible point  where the objective funct ion value is very 
close to the  opt imal  value. 

Let e ~ 2  -k~L, for a suitable cons tan t  k 1. Suppose we 
have a point  w T =(x T, yT, z) such t ha t  

t .  The  objective funct ion value at  w differs from the 
o p t i m u m  by at  mos t  e. 

2. Flow conservat ion at  each vertex is violated by at  mos t  
C. 

3. The  flow of each commodi ty  in each edge is at  least  e. 

4. The  sum of the flows in each edge does not  exceed its 
capacity by e. 

F rom w we obtain another  solution w' by the following pro- 
cedure. Let G i be the subgraph  induced by those edges in 
which the flow of commodi ty  i is at  least e, and the total  
flow is not  within e of capacity.  If G i contains a cycle, we 
push flow of commodi ty  i a round the cycle (without  increas- 
ing the  objective function) till the  flow of commodi ty  i in 
some edge goes to zero or the total  flow in some edge reaches 
capacity.  We repeat  this process till each G i is a forest. 
Obta in ing  W I takes O(s 2 e 2) operations.  

Define a sys tem of linear equat ions as follows. 

1. Include all equations defining flow conservation.  

2. If the  flow of commodi ty  i in an edge is at  mos t  e then  
equate the  corresponding variable to 0. 

3. If the  total  flow i ,  an edge is within e of capacity then  
equate the  sum of the flow variables corresponding to 
the  edge to its capacity.  

As each G i is a forest the  mat r ix  describing this sys tem of 
linear equat ions has  independent  columns,  and the sys tem 
then defines an opt imal  vertex [2, 7] (even though it may  be 

over determined).  

2.5. Prec is ion  of  a r i t h m e t i c  ope ra t i ons  

We shall use kl, k2,..., to denote constants .  The  compu- 
ta t ions  dur ing  each i terat ion are performed to a precision of 
k3L bits, and at the  end of each i teration,  each co-ordinate  
of the new point  obtained is rounded to the  smalles t  mult iple  
of 2 -k2L larger than  the  co-ordinate .  Because of rounding,  at  
each i terat ion we work with a linear p rogram where each 
cons t ra in t  may  be violated by at mos t  e. At  each i terat ion,  e 
increases by at  mos t  N 2  -k2L, and we may  choose k S so tha t  

e ~ 2  -klL when we j u m p  to the opt imal  solution. It is ade- 
quate  to show tha t  the condition number s  of the matr ices  
arising in the  computa t ion  are bounded by 2 ktL, we can then 
choose an appropr ia te  k 3 ~ k 4. It is easily seen tha t  the fro- 
benius no rms  of CrC,  AA T and the 2 -no rm of c are 
bounded by 2 L. Moreover,  each of liD [IF, liD-11]F, is at mos t  

2 (k2+l)L. Let ~(R) denote the condition number  of R 
(~(R) [IRI~IIR-1[~). By the repeated use of 
~ ( R R 1 R T ) _ ~ ( R R  T)~(R1) , it can be shown tha t  ~(Dll) ,  

~(D~), ~(Ai) and ~(A~) are bounded 2 ~'L. 
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As Q is obtained by intersecting the sphere 
z T x  + y T y  + z  2 .< 1 with the aft,no space 
CD~x + b u y - z c  = 0 and then projecting onto the space of 

(~r. z). ,<(Q) _< I Io ;% IIc I~ Ilcr cll~ < 2 (~'`,+')z' 
To bound a ( (BQ-1Br) - I )  it is then adequate to bound 

d2'0 / where tc(BBT). We have B = [AblZ 
b l = e z - D ~ C T D ; 1 %  and d2=l+eTD~-lc .  Let B l = / B ~ ' /  

Y ~ 

tb,/' 
B n=APD~ and let w T=(wl  T, w,) be a u n i t  vector. Let b n 
be the component  of b I in the column space of B H and blz 
the component  in the orthogonal complement of the column 
space of B n .  For simplicity let us assume that  during local 
optimizat ion we work with a D whose entries have been 
rounded to powers of 2 -k"i (this does not change the com- 

plexity of the algorithm). Then [Ibl2i l ~ 2 -kiD, for some k6, 
since we can find a basis for the null space of B ~  with 
rational co-ordinates.  We outline an argument  to lower 
bound llB7"+16. We have Bit,,... = B S + l + + , b l , + + , , + , , + .  As 
B11 is a graph incidence matrix with its columns weighted by 
entries from D~ it follows that  [[B~wl] ~ ~ 2 -(2k~+2)L Ilwil~. 
Moreover, I IbHl~ l lh l~  _<2 (ak2+2)L. We have two cases 

depending on the magnitude of w+. If w. > 2  -(Sk++~)L then 

I[W. b 12 I~ ~ 2 -(ks + Ski + 5)L ; other wise 
T > -(2ki4.2)L --1 11/7,xWl+w.bul ~ 2 . So if we let kT=5k2+k~+6 , 

then both wr(BlBiT)w, wT(BBT)w are at least 2 -~'D, and 
at most  2 (i~ + 4)L, and it then follows that  
~( BB T) _<2 (a'+4~+4)L" 

Finally, we must  show how to control the error increase 
in A ~  ~ during rank one updates without  paying an excessive 
penalty in number of operations. Suppose we have an 
approximate  inverse A1 ~ of A1 such that  A i A J = I + E  p 
(A i + uv T)-i is computed as follows. 

1. Compute  an initial approximation 
A f" =: A~ t -- ((Al'u)(Al'V) T/(1  + u TAltV)) 

2. (Ai '+uvT)(A1 s) = I + E i + E 2 ,  where E z is a constant  
rank matrix computable in O(s2v 2) operations. The 
required approximate inverse is A i " - E 2 ,  and 
(A 1 + u v T ) ( A i " - E z )  = I+E1-E2(E i+E2) .  So the 
error term is about E1 if we choose k 2 and k 3 so that  
E22 is of lower order than E 1. 

~. Conclusions 

We have extended Karmarkar ' s  interior point  method 
to give an efficient algorithm for Convex Quadratic Program- 
ming. This approach is also applicable to minimizing other 
convex functions over polytopes provided these functions can 
he efficiently minimized over ellipsoids. We have also 
described how Karmarkar ' s  algorithm can be speeded up for 
the Mult icommodity  Flow problem. The technique used here 
extends in a s t ra ightforward manner to similarly s t ructured 
linear programs.  
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A p p e n d i x  

S l i d i ng  O b j e c t i v e  F u n c t i o n  M e t h o d  

We shall show that  the number of i terations in the algo- 
r i thm in Section 1.3 is bounded by O(NL). Let LOW1, 
HIGHj, and ui, denote the value LOW, HIGH, and the 
threshold u, during the jth stage. At the jth stage we meas- 
ure potential  w.r . t  the guess g1 where 
91 = L O %  + e~(HIGHi--LOWD. Moreover, 
ui = L O W  i +ez(HIGHi-LOWi) .  Let z i be the point at the 
beginning of the jth stage. 

Case 1. gj+l > g~ " 

Then LOWi+ 1 =gJ, HIGH1+1 =HIGHi" 
Case 1.1. f(zi+i)<f(z °) • 

f (~s+~) _ gi+~ < f (~s+~)_ gs 

f(zo)_gs+~ - /(zO)_~,s 

Case 1.2. f (~S+q> f ( : ° )  • 

Then gi+1 = 9J + Cl(H[GHj+I - t'i)' o and 
f(z°)--g#+l ~ ( f ( z ° ) - g i ) ( 1 - - e l )  since f ( z  )>HIGH1+ 1. 
t ience 

zi+1 f(zi+1) --gi 1 f (  ) - -  ff$+1 < 
f(zO)_gj+l -- f(zO)_gj ( l - -e l )  

Case 2. gi+l-~gj " 

This case occurs when the objective function value becomes 
less than or equal to the threshold nj. We may assume tha t  
HIGHi+i=uj; otherwise we proceed through a sequence of 
dummy stages j + l ,  . . . . , j+q, such tha t  
H[GHj+i = uj , . ..... HIGHi+q_I = Uj+q--2, HIGH1+ q ~_ Uj+q-l '  
For each of these stages we have 
HSGHs+,+ ' = f (~i-,,+1)> , % ,  
gi+i+l < gl+i" Hence, 

f(zi+i+l)--gi+i+l < 

/ ( z 0 ) _  9s+~+l - 

LOWi+i+i =LOWi+i, 

f ( z i+ i+ l )  - gi+~+l 

r (z °) - gs+~ 

and 

f(zi+i+l)--gj+ i e2(1 -- el) < 
- f(zO)-gs+ , ( e~-e l )  

Suppose at each iteration in the jt,~ stage we get a 
N 

decrease of at  least 5 in the potential  z~7 I n ( f ( z ) ) .  Then 
i = t  zi 

after j stages we have 

Zj+i ~,~+1 f (  ) - -9 i+1  

J 
< -- ~ s t 5+ n j max(--ln(1 -- Cl), In( cz(1 -- e 1______) - )) 
- ,=, (c2-c1)  

where s t is the number of i terations in the Ith stage. Within 
O(L) stages the difference H I G H - L O W  falls to 2 -°(L) and 
by the above inequality the number of i terations in O(L) 
stages is O(NL). Once H I G H - L O W  is 2 -°(s~), we have a 
good enough guess for the opt imum value J'0 of f ( z ) ,  and we 
generate a sequence of points keeping HIGH, LOW, and the 
guess for f0, fixed, till we obtain a point  where the objective 
function value is at most 2 -°(L) away from .HIGH. 
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