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Abstract

In the first part of the paper, we extend Karmarkar’s interior point method to give an algorithm for Convex Quadratic Pro-
gramming which requires O(N*®(logL )(logN) L) arithmetic operations. At each iteration, Karmarkar’s method locally minim-
izes the linear {convex) numerator of a transformed objective function in the transformed domain. However, in the case of
Convex Quadratic Programming the numerator of the transformed objective function is not necessarily convex. We give a
method that, at each iteration, locally optimizes the original objective function in the original domain itself. As a consequence
we also obtain a monotonic decrease in the objective function. In the second part, we show how to solve the linear program
describing the multicommodity flow problem, with s commodities, in 0(33’5v2'5e L) arithmetic operations. In each problem
arithmetic operations are performed to a precision of O(L) bits where L is bounded by the number of bits in the input.

1. Convex Quadratic Programming

1.1. Introduction

In the first part of the paper we consider the problem of
minimizing convex quadratic functions over polytopes, i.e.
the Quadratic programming problem,

min f(z) = %xTBz +pTe
s.t. Az < b
z >0

where p and z are in R", A is in R™®, 6 €R™ and
B € R™ " is a positive semi—definite matrix. Let N =n+m.
This problem was first solved by adapting the simplex
method for linear programming [10]. A polynomial time
algorithm for this problem was first presented in [6]. This
polynomial time algorithm uses the ellipsoid method and in
the worst case performs O((N'L) arithmetic operations
where each operation requires a precision of O(L) bits. (L is
bounded by the number of bits in the input). Here we
describe an algorithm for the Quadratic programming prob-
lem which requires O(N*%(logL )(log/N)L) arithmetic opera-
tions each performed up to a precision of O(L ) bits where

L = log (largest absolute value of the determinant

B AT
of any square submatrix of 4 0 )
+log(max p;) + log(max b;) + logN
1 t
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We assume without loss of generality that the problem
is in the standard form,

min f(z)=—%—zTBz +pTe
s.t. Az +y =1b
eTe=M
z >0
where 2T =|[z5,29,27,97}, N=n+tm+2, z € RV,

tER", yER™, ACR™",bER" and
el=[1,1,..,1] € RY. Any Quadratic programming problem
can be transformed into the above form by a shift of origin,
addition of slack variables y; and by introducing the equality

n m
2w+ Yy b e+ =M
i=1 i=1

for a large enough value of M. ( M=N*2" suffices ).

We follow Karmarkar’s method for linear programming
and at each iteration reduce the global optimization to a
series of local optimizations. The point obtained after

O(NL) such iterations is sufficiently close to the eptimal and
an exact optimum is then found. As in [4] convergence is
measured by a potential function. In order to obtain a
reduction in the potential function, at each iteration Karmar-
kar uses a projective transformation to obtain a local optimi-
zation problem in the transformed domain. The projective
transformation maps the linear objective function to a ratio
of linear functions and the local optimization involves the
minimization of the numerator of the transformed objective
function over an ellipsoid. For the Quadratic programming
problem however, since the objective function contains both
2 linear and a quadratic term the application of the projec-
tive transformation does not always map the convex qua-
dratic form to a function whose numerator is convex. So the
approach of locally optimizing the numerator of the
transformed objective function fails. In section 1.2 we show
that if the function f(z) being minimized is convex, a poten-
tial decrease can still be found by a set of local optimizations
in the original domain itself. In each local optimization f(z)
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is minimized over an ellipsoid. As a consequence we obtain an
algorithm where the value of the objective function also
decreases at each iteration. In section 1.3 we then present an
algorithm which minimizes convex functions over polytopes.

In section 1.4 we reduce the local optimization problems
arising in the convex Quadratic programming problem to a
simpler form which we show how to solve efficiently. In sec-
tion 1.5 we improve the amortized complexity of the convex
Quadratic programming algorithm to O(N*%(logN)(logL)L)
arithmetic operations by solving slightly modified local
optimization problems. In section 1.6 we show how to find
an exact optimum from a point sufficiently close in objective
function value to the optimum. Finally, in section 1.7 it is
shown that O(L) bit numbers suffice for the arithmetic
operations.

1.2. Convergence via local optimizations

We measure convergence by means of the potential
function

Ple T,

where f(z) is the function being optimized and f, is the
minimum value of f(z) over the polytope. We assume that
f(z) is convex. In this section we show that by using local
optimizations we can move from the current feasible point to
a point which reduces the potential by at least a constant.
Let a=(a,a,, - - ,ay) be the current strictly interior feasi-
ble point. We first show that there is an ellipsoid strictly
within the feasible region which contains @ as well as a point
which decreases the potential by a constant. We next show
that by a series of minimizations of the convex function f(z}
over ellipsoids we can find such a point. In fact we can find a
point which not only decreases the potential function by a
constant but also reduces the objective function value. (This
approach extends in a straight forward manner to reduce the
problem of optimizing arbitrary convex functions over
polytopes to a series of local optimizations; however the local
optimizations appear difficult in most cases).

Consider the projective transformation
-1
2=T(z)=-—?——zl—, where  D=diag[a,,a,, - *,ay| and
e’ D7z
2€RY. This transformation maps a, where a satisfies
N
z;=M to ay=[1/N,---,1/N], the center of the simplex
=1
|z 3,=1, 220{. The inverse transformation is given by
i=1
2=T7Y3)=M DZ 1 \nder the condition that e z=M.
e’ Dz

Note that both the transformation and its inverse map
straight lines to straight lines. Let S be the sphere in the
transformed domain defined by

N
(5: Y5 <a’/N(N-1) + 1/N}i2:eT2=1}

i=1
and let £ be T7Y(S). E contains the point a. Now as E is
bounded, and can be expressed as the intersection of a convex
region defined by a quadratic inequality and the hyperplane
eT2=M, it is an ellipsoidal region. Moreover, its intersec-
tion with eT D 'z=c, where ¢ is some constant, is also an
ellipsoidal region. The feasible region for the optimization
problem is the intersection of the affine space
f2={z:Az+y=b}, the hyperplane eTz=M, and the positive
orthant 20 where 27=[z,, 25,27, y7]. Since E is contained
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in the positive orthant, Eﬂ(l is an ellipsoidal region that lies
within the feasible region and contains a.

Let 2, be the point where f(z) is optimized in 2. If 2,
is in E{2 then optimizing f(z) over the ellipsoidal region
suffices to find the optimum. So suppose z, is not in EM2.
Let b be the point where the straight line joining e to 2,
intersects the boundary of EM{. The next lemma shows
that the potential decrease P(a)—P(b) is greater than some
constant. We first define the following useful variant of the
potential function

P(2)=Nln{f(z)—fo) — Nin(eTD712)
w.r.t the current point a.
Let f(z) be a

P(a)~P(b)>a and thus P(a)—P(b)Za——2(—1°‘_—a)-.

Proof. Since b is the point where the straight line joining e
to z, intersects the boundary of EM2. b=(1—N)a+hz; and

T(6)=(1-R) T(a)+A T(z)

Lemma 1. convex function.

Then

where A=a/N. As T maps straight lines to straight lines

" TD—la
1-3)=2 1-X
U= Y

and since
F(6)—fo<(1-N)(f (a)—f0)
F()~Fo= 21—/ NS ()~1o)
Thus P(a)—P(b)>a. Also
fla)—fo N o
P(a)—-P(b)=Nln(m) — igln(?)

a;
=
by

>Nin(1/(1-a/N)) - _g’flln( )

>a— [4,sect. 4,lemmad.2] m

o
2(1—a)
We next show how to find a point which gives a con-

stant reduction in potential. Consider the hyperplanes H
and Hp defined by the equations

e’Dlz=¢; and eTD7lz=¢ (14+1/N%)

respectively, where ¢, < eTD7'h < ¢ (1+1/N?). Let b, and
bz be the points which minimize f(z) over EMMH, and
ENINHg respectively. And let by be the point which
minimizes f(z) over E(Mf2.

Lemma 2. One of the points bg,b;,bp achieves a reduction

of a—NIn(1+1/N?%) in P(z) and thus a reduction of
2

o ~ﬁ—mn(1+1/1\ﬂ) in P(2).

Proof. First suppose that ¢; < eTD ligp < ¢y (1+1/N2).

Then

Tp-1
Flbe)—1o < £(b)~fo < SpB{1-a/N)(f (a)10)
and
%TTD/_I;—'; < eTD by < eTD-1b{1+1/NP)
~+



. A fla)—=fo e’D7la
P(a)-P(b N1 -
(a) ( E) n(f(bE)*fO) Nll'l( CTD_le)
TD 1
2 _Nln(l_a/N)—_Nln( :TD»IbE )

> a—Nln(141/N?%)

Next suppose that eTD7lb;<¢, ( the case where
eT Dby >¢, (14+1/N?) is similar ). Since f(z) is a convex
function and as the straight line joining by to b intersects
the plane e’ D lz=¢;, f(6,)<f(b) . Thus

F(by)~fo € 2 (1 a/NY(f (a)—1).

eTD™ e
T -1
—(f:%}v—g)g eTD7;, <eTD"'b and thus, as in the
previous case,

P(b,)-P(a) > a—NIn(1+1/N?) =

Lemma 2 enables us to find a point which achieves the
reduction of potential as follows: Consider the sequence of
planes H; defined as

H;={z: eTD_lz=cJ-, cj=(1~+—j/N2)eTD'1al
j=... __2_1012 e
Let H={ H; : H; ﬂEﬂH#qﬁ { . Since the image of E is the
sphere § w1th radlus af/N, N/(1+a) <eTD'z < N/(1—a)
and hence the ratio of the maximum to the minimum value
of eTD™ 'z in EMA is bounded by (1+a}/(1—a). Moreover
eTD 1a=N. There are thus O(N?) hyperplanes in the set
H. Let b; be the point that minimizes f(z) over EMINH,
and let by be the point that minimizes f(z) over EMf. By
definition ¢;,; < ¢;{(1+1/N?) and thus Lemma 2 allows us to
conclude that one of the points in the set
g\ to;: H;MEM?#¢), gives the desired reduction in
potential.

However, a point where the potential function is
reduced by a constant may be found faster by using a form
of binary searc}l. First we need the following definitions and
lemma. Let P (j)= min 'ln(f( )~fo)—Ine;} where H,cH

0
is defined by eT D" z= LtP = minP '(4).

ned by et P"(j) min (4)

Lemma 3. Suppose P'(j)>P*(j0) and k lies in between j
and 7;. Then
1 -k (1 ~a!

P*(j) > P*(k) + 1 P'(io)—P'(i))

2 j—4o (1+a)
Proof. Let X\ be such that ¢, =X¢;+(1-N¢;. Thus
A= ,;:j:: and by convexity of f(2)
F(b) SXf(b;)H1=N)f(b;). Thus

P (k) < In(\(f (b;)—f o) H1-N(f (b;)—f o)) — In

Now since

f(o5,~f 2
Uy gy

P (jo)=P (5) = 1n(m -

(he;H1-N)ey ).
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flb)—fo _ ﬁo_ef"(jc)-f"(f)
(bj)"fo ¢
and hence
1) Sis Pig-Pl) 1 €
I —In{1+—2-2).
P(Ic)<P()+ln( ~— cje ) ln(+)\ cj)
Finally,
c N
1;)\ . ( ——CP (jo)-P (J))
P"(j)—P’ (k) >—In(1~ . )
- €
142
+ A c,—
¢ i
and since L-———l< —< (14e) and 1-X\ = —l—k the
(1+a) ~ ¢ — (1-a) I—Jo

result follows, MW

Lemma 3 is next used to show that only O(logN)
optimizations of f(z) need to be done.

Lemma 4. One points in  the set
HB = { b, :i=0, +2% where 0<k < log I A | U'b !
reduces the potential by at least
1 {(1~a))? o — o (1—a)d?
8 (l+a) 2(1—a)  32(14+a)N’
Proof. If by gives the desired reduction in potential then we
are done. Thus suppose otherwise. By Lemma 2,
P(a)/N —P'(jo)) > a/N. Let 28<j<2¥*’.  Then by
Lemma 3

P ( )<P __L( ‘_04! P (jo)-F (0))‘

1+<x
Also let
P(0) = P(a)/N =7, 7>0

Now if v>a/2N then since P (jo) < P(0), by gives the
desired potential change. Otherwise

. . 1 (1~ (1= —a)’o?
P(24) < P(e)/N - o5 (1+a) 32(1+0) N2
Thus
N 1L (1=0)?  (1—a)’e’
Ple)=Plb) 2 5 (G ® ™ 32(14a)N

and the result follows. M

In fact a point which not only reduces the potential by a
constant but also reduces the objective function can be found
by searching the set H?. Redefine H; to be the hyperplane

on which there is a point which reduces the potential by a
constant and also reduces the objective function. The
existence of such a point is assured by Lemma 2. Now by the
convexity of f(z), f(a)> f(by) > f(b;) in the proof of
Lemma 4 above, and thus &, gives a reduction in potential
as well as a reduction in objective [unction. Alternatively, by
using Lemma 3 a binary search may be applied on the set H
to yield the desired point.

The algorithm we cescribe later will optimize over
slightly shrunk and delormed ellipsoids and we next show
that we are still assured of a sufficient reduction in potential.
Suppose the ellipsoid £ is shrunk by at most a factor of
{1-+1/N?%) giving the ellipsoid E. Le 'mma 1 still holds with
pomt b redefined to be on the ellipsoid E ({2 since the image
of E' under the transformation T'(z) contains the sphere,



52<(14a/N32a?/N(N-1) + 1/N iz e =1},

'D'jz

[l
—

where ¢ is a constant. Let by be the point which optimizes
f(z) over E'ﬂﬂ. And let &, and by be the points which
minimize f(z) over E, MM, and EpN\MHg respec-
tively, where H; and Hp are defined as before in terms of the
redefined b, and B, DE and EpDE. With this redefinition,
Lemma 2 remains valid. Finally, let b; be the point which

minimizes f(z) over E;MAH; where H; are the hyper-
planes defined as before and E; ;)E'. Lemma 4 still holds and
a point assuring a constant reduction in potential can be
found as previously described.

1.8. Algorithm

We now present an algorithm to minimize a convex
function f{z) over a polytope. In order to measure potential
changes the minimum value f, of the function f(z) over the
polytope is required. Since f is unknown, we make use of a
sliding objective function method. We maintain two parame-
ters HIGH and LOW which serve as upper and lower bounds
on fo. The algorithm proceeds in stages. At the jth stage
we have a guess g; for fy such that LOW <g; <HIGH, and
during the jth stage we measure potential w.r.t. g;. At each
iteration during a stage we try to find a point that reduces
the potential by a constant, by performing O(logN} local
minimizations of f(z) over ellipsoids contained within the
polytope. The local minimizations are described by Problem
1 and Problem 2 which are described in Section 1.4. If one of
the points obtained by these local minimizations reduces the
potential as required then we proceed to the next iteration;
otherwise the guess g; is guaranteed to be less than [, 14],
and we reset LOW to g;. Once the objective function falls
below a threshold v, LOW <u <HIGH, we reset HIGH to
the current value of f(z). A new stage starts whenever
LOW or HIGH are reset, and a new guess for f; is then com-
puted.

In O(L) stages the difference HIGH —-LOW falls to
278(L); the total number of iterations in these O(L) stages is
O(NL). Then we keep HIGH, LOW, and the guess for f,
fixed, and in O(NL) extra iterations we obtain a point where
the value of f(z) is at most 2-6() away from fo- A proof of
this is given in the Appendix. We then find an exact
optimum as described in Section 1.7.

ALGORITHM QP
Begin
Let 2%=[20,22,2% 4% be an initial point such that
Al=b, Az®<b, 220,
Let LOW=2"0L) HIGH=2°L) anq e¢=2~8L),
7:=0; t:=0;
/¥ 7 and t arc the stage and iteration numbers*/
While HIGH—-LOW >¢ do
Begin
w:=LOW +c,(HIGH—-LOW)
9;:=LOW +c (HIGH—-LOW)

/¥ ¢, and ¢, are appropriately chosen constants. */
P ()= 3o L9
! i=1 i
While f(z)>u and there is a constant reduction in
potential P;{z) do
Begin

D=diag(2}, - - -, 2k)

Let by be the point that minimizes f(z)
over the region defined by
Az +y =1b
eTe=M ;
2 /2
2TD 2% < (LM)—-(1+1/2N3)6TD'IZ)2,

Let b;, i=0, £2* where OSkSJl—Og—U—}Z{—I—Hj—L, be

the point that minimizes f(z)
over the region defined by
Az +y =b
efz=M
eTD7z = eT[;’Ia(ll—;i/Nz)
2TD™% < (L———)——a —*‘]I\;, / (1+1/2N3)6TD—12)2

If one of the points bg,b;, t=0, +2F

where 0<k < log |12{| +1-,

gives a constant reduction in potential then
let 2**! be one such point
else
let z** be z*
ti=t+1
end
if f(z)<u then HIGH:=f(z)
else LOW:=g;
Ji=7+1
end
If f(2z)—HIGH >¢ then
let g;=HIGH and find a sequence of points with
decreasing potential P;(2) until f(2)—HIGH <e.
end.

1.4. Salving the local optimization problems

The algorithm described in the previous section solves
the convex Quadratic programming problem, in O(NL)
iterations where each iteration comprises a minimization of
the convex quadratic function f(z) over an ellipsoid as
described by Problem P1 and O{log/N) similar minimizations
as described by Problem P2. Problems P1 and P2 are
described below.

Problem P1 min f(z) = —;—ITBI +p7x
s.t. Az +y =b
eTze=M
ID7 % < (sleTD 1)

where 2T =[z1,zz,xT,yT], N = n+m+2, z €RYN,

t€R",y€R” ,A/ze R™™ b e R™ eT={1,1,...,1] € RV,
2 1

and r!= i‘-’—Jr—]JVX)——(Hl/zN:‘), D = diag[ay,aq, * *

where a=[all,a12,a3,...,aN] is the current point,

,aN]

Problem P2 min f(z) = -%—ITB:E +pTz

st Az +y=b
eTz=M
Hi: e™D7'2=¢ = N(1+j/N%)

2, AL/2
2TD% < (19‘—_%\,)——6TD_I,z)2

are as defined above and
+1.  Each

where z, N, z,y, A, b and el
7=+2% where 0<k<C log le ‘ of the above
problems is next reduced to the problem

Problem 2. min LIy Tz

st (2—z5)T Glz—zg) < 2r, zER™.
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by elimination of the slacks y,z;,z,. We will then show how
to solve Problem 2 efficiently.

Let D = diag[azl,a:z,Dz,Dy] where D, and D, denote the
diagonal submatrices in D corresponding to the z and y
coordinates respectively. We let ¢, and e, denote the vec-
tors defined by of =¢fD;1 and ayT = eTD ~1 where

T =[1,1,..,1] ER" and cyT =[L,1, 1 €R'" To reduce
Problem P1 first combine slacks 2,2, into 23 as zz=2;+2,.
On substituting yp,=bp; — Ap,& Where

y b
Yp1 = P bpy = M—eyTb
A
Apr=| 1l e/{—" 627 -e, A
€a

Problem P1 reduces to
Problem?2.
s.t. (z—zc‘)TGl(a:—zGl) < 2r;, zER".
where G, = G4y + G, and
b =Dt +ATD A

min —;—ZTB.’E +pTe

T T
Gip =(o, + o, ) eqeh — (P a.ef + Apr0y,0,, Apy)
ol
+ (q, y,AP1+AP1 o)

where a, T =[], 1/(a,, + a,)) and
-1
151 =1 ) (bPI ¥p1 !/mAPl bPla’yp a") bPl yPlAPI]G
— e, T T
271 = Zg,“lGl:‘tGl - bngyP?bPl + (T ) bPIayp;aymbPl

Problem P2 is also reduced to the same form as Prob-
lem 2 by substituting yp; = bpy—Appz Where

v A
yp2 = |21p  Ap = T
€A
2, A1
z eg
1 1

_,T_,.T
A, eq =€, —¢ A,

]

1/a, 1/a,

€p & ezTDz—l - elITD!;1
b
M~—eyTb
A -1

z Ty -1
¢ e, D, b

bPZ -

Problem P2 reduces to
Problem2. minz Bz +p’2 )
s.t. (x—xcz)TGz(:c~sz) < 2r, zER",
where G, = Gy + Gy, and
=Dt +ATD?A

a;z 0 —e‘g‘
I\ T 1 A -1
Gy = {~ea eD](Az ) Q 01—2 z eg
2

= Gy (AF,D,; bpy)

2
a“+N -
2ry = C.‘zi—Nz_)‘ - bPTszszPz

1.6. Optimizing Convex Quadratic functions over Ellip-
soids

We next show how to efficiently solve the problem

Problem 2. min 27Bz +pTz
st (z—zg)T G(z—z5) < 2r, 2ER"

By application of a linear transformation the above problem
may be converted to the following form;

Problem 3. min 2]z, + @7z,

s.t. (z—zp)TA(z—2,) < 2r

where A is a diagonal matrix with positive entries and

Tzl 2]], 2,€R* , 2,€R"™*. We assume that the
optimum to Problem 2 lies on the boundary of the ellipsoid
(x—zg)T G(z—25) < 27, ER"; otherwise B is necessarily
—B_lp

non-singular and the optimum is given by z=

To solve Problem 2 we first characterize the solution to
Problem 3. By the theory of Lagrange multipliers the
optima to Problem 3 are given by the solution to the set of
equations

7y
p =uA(z—zg) (1)
(—20)T A(z—zg)=27 (2)
Let A=diag(X\,Aq, * * +,\,). This gives
si=pX(z;—2) =1,k
szl‘)‘j(zj“zoj) J=k+1,---,n
Substituting into the ellipsoid equation (2), gives
2 2
1 k Io )\ 1" q;
¥u)= ?Z ry 2; =r.
SN 2505 e

Firstly note that when z minimizes the objective function u
must be negative. Suppose otherwise, i.e. that u is positive.
Then z; and z;—z,, have the same sign for all i and thus
decreasing z; decreases the objective function while staying
within the ellipsoid defined in (2). Moreover ¥(u) is a mono-
tonically increasing function of u , for u<<0. Thus a solution
to ¥(u ) r can be (obtained by a binary search on p, u<0.
Let LI/( “Y=r,for 4" <0. We next show that it suffices to find
a u st *(1+1/2n3) < < u'. This choice of u ensures
that r/(1+1/2n3)§ #(1) <r, and the corresponding
optimizes the objective function over the slightly shrunk
ellisoid, (z—z,)TA(z—2o) < 29(x). This corresponds to
optimizing over the slightly shrunk ellipsoid
(z—20)T G(z—x0) < 2¥() in Problem 2.



Now, as shown in section 3, when both Problems P1
and P2 are reduced to problems like Problem 2, G is
obtained by intersecting the ellipsoid E and then projecting
onto a subspace. Suppose E is shrunk by some factor +.
Then EM2, where {2 is an affine space, is shrunk by at least
4, ¥>, and the ellipsoid which is the projection of ENN
onto some subspace is shrunk by the same factor fy Thus
optimizing over (z —zo)T Glz—z,) < 29(1) corresponds to
optimizing over Em.ﬂ in Problem P1 and over E; mﬂmH in
problem P2, where E is obtained by shrinking E by a factor
of at most (1+1/2n%). As described in section 1.2 these
optimizations suffice to find a sufficient reduction in poten-
tial.

We next note that the value of the Lagrange multiplier
4 remains invariant under linear transformations since the
corresponding equations characterizing the multiplier u are
equivalent. As Problem 2 and Problem 3 are related by a
lmear transformatlon, it sufﬁces to find a p' such that
p (1417203 < g <y, where n' satisfies

Bz +p = pG(z—zg)

(£—24)T G(z—2g) = 2r, TER™.
In our algorithm the value of 1" is upper and lower bounded
by 2°9%) and 27°(L) respectively. So to obtain the desired

approximation u' to u* in Problem 2 we simply solve the sys-
tem of equations

2Br +p =2uG(z—zg)

for O(logL) values of p. The complexity of this procedure is
O(n®(logL)} arithmetic operations, using standard linear

equation solvers.

Using this solution to Problem 2, the algorithm for
Quadratic programming requires O(n3N(logN)(logL)L)
arithmetic operations.

1.6. Improving the complexity

In this section we show how to reduce the complexity of
the Quadratic Programming problem by solving slightly
modified versions of problems P1 and P2 during each itera-
tion. The modified problems differ in that the quadratic
form zTD~%z changes to zTD3%: in both the problems
where D,=DA and A=diag|d,, ---,4y], A%€l1/2, 2]
and « is replaced by «/2. The quadratic constraint now
defines a slightly twisted and shrunk ellipsoid. By the results
of section 1.2 a constant reductlon in potentlal can still be
found. Let = dlag[d dA ]

D = diag[z}2h, - 25 be the matrlces D, and D at the
ith iteration. ( z°=[z1, - -+ 24] is the pomt at the beginning

and

|+l
of the ith iteration.) Moreover let g; = —Z’ . Initially
. =g
DY = D%and D'} is obtained from D as follows
o
Ifo,dy €2 V5 \/2z'+1] then

(Type 1 Change )
(Type 2 Change )
The total number of such changes has been shown to be
bounded by O(N'3L) throughout the execution of the algo-
rithm in [4]. We use this fact to improve the time complexity
of the Quadratic Programming algorithm. In our algorithm
we express D as Dy + D;, where Dy is a high rank matrix
and Dj =diag[d;, - --,dy | is a low rank matrix which
accumulates the type 2 changes. Initially Dy=D% and D, =0.

E
T T i+l ;
else dAj —aidAJ_+(zj —a,«d’AJ_)

At the end of the ith iteration Dy and D; are updated as fol-
lows:

Procedure Update Dy, D,

Dy =0,Dy
D, =ao.D, o1

‘ % YR ES!
IfU,-dAj é[ \]/2 , \/2;].+ ]

then dy = d H(z* — 0,d3)

Now in order to solve the modified problems P1 and P2
we proceed as in the previous section and reduce each of the
problems to Problem 2. The matrices in Problem 2
corresponding to Problem P1 and P2 are G,=G;+Gy, and

Gy=G 5 +Gy, respectively. Note that Gy;=Cy and G,y and
G, are constant rank matrices. Let G!; denote the matrix
Gn in Problem 2 at the ith iteration. The decomposition

=Dy + D, induces a decomposition of Gi, into
G’{1=GH+GL. where

Gy =Dg? + ATDglA,

G, =Di2+ATD;} A

and Dy,, Dy, are the entries in Dy corresponding to the z
and y coordinates respectively. Similarly Dy, Dy, are the
entries in D; corresponding to the z and y coordinates
respectively. Now in the ith iteration Gy changes by a scale
factor only and each Type 2 change in D), induces a rank one
change in G;. We will show that as long as Gy, has low rank
and some matrices related to Gy have been precomputed,
Problem 2 ( and hence Problem P1 and Problems P2 ) can
solved quicker than before. Unfortunately this procedure is
not economical when the rank of G exceeds a certain thres-
hold. At this stage we reset Dy, Gy, Dy, G; and recompute
the required matrices. A value for this threshold ( which is
=N? 5/3) is obtained by balancing the number of operations
regired to recompute the required matrices and the number
of operations required to solve Problem P1 and O(logN)
Problems P2.

We need to precompute { using O{n
following matrices related to Gy

(1) The Cholesky factorization Gy =LL T and L71

L is a lower triangular matrix.

{(2) The tridiagonaliztion (L_I)B(L_I)T = QTQT, where Q
is a unitary matrix and T is a tridiagonal matrix.
(3) The products (L~ 1T 9 and (L7)T Q4.

We next give a modified algorithm assuming that the
optimum value of the objective function is zero; the sliding
objective function method may be incorporated in a manner
similar to that in the algorithm given in section 1.3.
Modified Algorithm

Let z° be an initial point such that
A2 = b, Az°<b, 2°>0

%) operations ) the

where

Dy:=D§4=D°

D=0

Gy= Gn—qu e=27 G(L)

Compute L, L7, @, T, ( HrQ, L TeA

While f(z)>¢ and there is a constant reduction in

gjln( ﬂi)—) do
i=1 2



Begin (ith iteration )

Find a point that decreases the potential by a constant

by solving Problem P1 and O(logN) Problems P2.

Each problem is solved by reducing it to problem 2 which

is solved approximately using precomputed matrices.
Update Dy, D, .
If (rank of D;) > threshold ( = N%5/3) then
Dy:=D"* D=0
Compute L, L7%, @, T,
(L, (L7 e4

end

In order to find a point that assures a reduction in
potential in the above algorithm we need to solve the follow-
ing form of Problem 2,

min%-xTBz +pTz
s.t(z—2z5)T G(z—25) <r, zER™.
where G = Gy + G + G,. G, is a matrix with constant
rank and we are given the Cholesky factorization GH=LLT,
the tridiagonalization (L )B(L™1)T = @TQ7 and the pro-
ducts (L™)7Q,(L)TQA. Moreover G is a matrix of low
rank and can be expressed as
G, =D P +ATD; A

where Dy, and D;, are diagonal submatrices of D
corresponding to the z and y coordinates. Each has at most
N25/3 entries. G, + G, can thus be expressed as

G, + G, =U V] +ATU,V A
Uy, Vi, Uy, Vy are with n rows and
t-——-O(N“/a) columns. On applying the linear transformation
w = QTLTx, Problem 2 becomes
min w? Tw + p‘fw

st (w—wg)T(I + UVE + U,V w —wg) <+
where pf = pT(LT)'Q, wg = QTLT 25 and

Uy=QTL'ATU, V,=QTL'ATV,,

U4=QTL_lU1, V4=QTL'1V1.
Note that having precomputed the products
(L™H7 @ and (L7Y7 @A, Uy, V,, U,, V, can be computed in
O(nt) arithmetic operations.

where matrices

A solution to the transformed problem is obtained,
using the method outlined in section 1.5, by solving the fol-
lowing system of equations for O(logV + logL) values of u.

2Tw +p, = ~2u(l + UyV + U, V)w - wg)
==2u(l + UsV{)(w — wg)
Uf =(Uf,Uf] and VI =[V],V]]. Let

T +ul =R, and let T + pul +pUV{ =R, The above
system of equations can be now rewritten as

2R,w = —p,+2(R,~T)wg
and is solved as follows,

(1)

where

Compute R[. Since R, is tridiagonal this can be done
with O(n?) arithmetic operations.

Compute Ry =R['U; and R, =RV by solving
Ryw = Uy and Ryw = V. This requires O{nt) arith-
metic operations.

(2)
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(3) Express
R7' =R — pRTMUG(T + pVIRT'US| VIR
=R;! —uR,RIR,

In this expression VIR;!Uj is computed in O(nt?)
operations. Then computing R ! requires an additional
O(#?) operations. Rj;'is not computed explicitly but
left in the second form.

(4) Finally the solution w is obtained by postmultiplying
the expression for R{l by the  vector

"_;‘Pw + (R,~T)wg in O(n?) operations.

The total number of arithmetic operations required in
the entire algorithm are
O(n3N*PL + nN*ANL (logN + logL ))=0(N*%(logN + logL)L)
since

(1) It requires O(n®) operations to compute L,Q,T and the

associated products. These computations are performed
O(N'SL /N*53) number of times.

(2) At each iteration O(nt?)=0(nN®"?) operations are
required to solve each of the O(logN-+HogL) modified
Problems 2.

1.7. Finding an exact optimum

In this section we describe how to find an exact optimal
solution once we have a solution that is very close in objec-
tive function value to the optimum. Note that there is a
point with rational coordinates which minimizes the convex
quadratic form over the polytope. Consider a maximal set of
inequalities, say A,z<b;, that are satisfied with equality at
an optimum point. Then every solution to the problem

min —%—xTBz + pT:c
st. Az =6

is a solution to the original problem. Using the theory of con-
vex programming [10], the solutions to the above problem
are characterized by the following system of equations,

Bz +p =ATX

Az =0b,

the solution of which has the desired rational coordinates. (X
is the Lagrange multiplier.)

We first consider the case when the matrix B in the
quadratic form is positive definite. Let z,, be an optimum,
let ¢ =z,,+Az,, be a point in the polytope, and let

%zTB:c +pTe = ’;_IoTpthopt + pTzopt + 6. Since  the

polytope lies entirely to one side of the hyperplane which is
tangential to the surface defining the objective function at
the optimum point, (Bz,, + p)7z > (Bzyy + p) 2, for
every point z in the polytope. Thus it follows that
(Az,y )T B(Az,,) <6, and

Az, |2 < 6/(smallest eigenvalue of B )

opt

Since the smallest eigenvalue of B is greater than —;—E-,
n

choosing 6 < 2_(5L+2+l°g’") ensures that llAz,,p, ||2 < g=2l+),

We find an z, a required approximation to the optimum, by
letting ¢=6 in the algerithm in section 1.3. The optimum
point is found by using continued fractions to jump to the
unique rational point, with denominators and numerators
less than 2%, closest to the point obtained after execution of
the algorithm in section 1.3.



Next, suppose that the matrix B in the quadratic form
is positive semi-definite. In this case the optimum point is
not unique but for any two optima Top and znp,’,
Bz, = Bz,,'. Since there exists an optimum point T, that
has rational coordinates, the numerators and the common
denominator being integers less than 2%, Bz,,, and pTa:DP,
also have rational coordinates with the numerators and the
common denominator being integers less than 2%% as B and

p have integer entries. Let z = Zopt + ATop, Where z,, is an
optimum, and let
1 1

-é—:cTBz +pTa = ?zoﬁ,Bz”, + pT:cop, + 6. Also let

Topt = xuptl + zopt,! T =1 + Zy and Azopl = Azapt‘ + Azoplz
where z,,,, z; and Az,,, are in the row space of B whereas

Topty Tz and Azaptz are in the null space of B. Then

1 1
?xlTle +pTz = —Z-xg;,tleoptl + pTzop, +6, and by an

argument similar to that in the previous case,

”Axop,lnz2 < 6/(smallest non-zero eigenvalue of B )

An optimum point is found as follows. First find an z such
that 6 < 2_(7L+31052N+2), and compute Bz,, by evaluating
Bz and using the method of continued fractions to find Bz,
Similarly, compute pT:cop, from pTz. An optimum point is
then a solution to the following feasibility problem.

Br = Bz,

T, _,T
Pz =pia,,

Az <b

>0

1.8. Precision of Arithmetic Operations

In this section we show that it is adequate to perform
arithmetic operations to a precision of O(L) bits. We asume
that the polytope defined by Az <b, £>0, is non-degenerate
(if not we can work with the polytope Az <b +2700) ¢ >0
which is guranteed to be non-degenerate {7}). B

Initially, we start with a point in the interior of the
slightly modified polytope

Az <b—p, 2 >4, P=2"F

At the beginning of the i iteration we have a point z° and a
slack vector y' located in the polytope P* defined by

ks kgl —kiL —koL
H

Ay =b—p a2y o7l gmhl s pisy

During the i* iteration we do local optimizations over ellip-
soids contained in the polytope P’ and obtain a point (z*Y
and a slack vector (y') which reduce the potential. (z') and
(v') are still in the polytope P'. The components of (z*y

and (y') are rounded off to multiples of gkl g obtain z'+!

and 't g together with the slack v**! may no longer lie
in the polytope P'. However, z'*l y'*! satisfy
—k,L

Az +y gb _ﬂi +(n+1)(aij)max2 ; where (aij)max is the
entry with the largest magnitude among all the entries in the
constraint matrix A. So we can find B'*! such that
0<F —F M < (n+1)(ag ) 2.

The number of iterations is bounded by yNL for some
constant <, and we choose k, so that the final point at the
end of the last iteration is within the original polytope
Az <b, 2 >0. We choose k; so that the optimum value of
the objective the

max

function over modified polytope
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Az <b—pF° £ >4 differs from the optimum value over the
original polytope Az <b, z>0, by at most 6% where
922—7L+log2N+2' Once we have a point where the value of
the objective function differs from the optimum value over
the original polytope by at most & we can use the method
described in Section 1.7 to find an exact optimum over the
original polytope. So let us suppose thaf, the value of the
objective function at z* differs from the optimum value over
the original polytope by at least 8. Then, by a series of local
optimizations over ellipsoids contained in the polytope PS,
we can find a point (z'), and a slack (y')!, which decrease the
potential by a constant, and the rounding process changes
the potential by a negligible amount.

We choose M in the equation e’z =M large enough so
that the slacks z; and z, are always greater than or equal to
n32L. Since the largest value of any co-ordinate of a feasible
point z and slack y is bounded by 27, the relative changes in
2y and z, are negligible, and so z, and z, have a negligible
effect on the potential.

We shall now bound the condition numbers of the
matrices describing the ellipsoids over which local optimiza-
tions are performed. During each stage we have to solve
Problem P1 and Problem P2 as described in Section 1.4.
Problem P1 reduces to

min %zTBz +pTz
T n
st (z—2g) Gy(z—2g) < 2ry, zER™
where G is the matrix describing the projection of EM12,
where E =|z:eTz=M}, ﬂ={z:Aa:—’f-y =b1, and
2T = (27,47, 2, 25, onto the space of the z's.
As the condition number of the matrix describing an

ellipsoid does not increase on intersecting the ellipsoid with
an affine space K{E(2)<x(E). Moreover,

&(G) < k(EM2)(1+ largest eigenvalue of A TA)

«(E) is bounded as follows: Let a be the current point,
K(E)<

The largest distance from ¢ to boundary of £ is at most
n2L. Let b be the point closest to a on the boundary of E.
Suppose [eTD ' — eTD Ye|>1/n, then
la—bll, > 1/(nliDtell,) > gkl /n% otherwise
fa—bll, > (1D 2el,/eTDte) > a’l_k’L/nZ, since T(a) is
the center of the sphere, S, in the transformed domain, and
b lies on the boundary of this sphere. Thus
wE) < n3glkrt L

Problem P2 is also reduced to the same form as Prob-
lem 2. Problem P2 reduces to

largest distance from a to boundary of E
smallest distance from a to boundary of E

min —;—:TB:C +pT2
s.t. (z—xGZ)TG’z(x—zGZ) < 2r, zER™
where Gy = Gy + G =D; 2+ ATD?A + Gyy, D,, and
D, are as defined in Section 1.4. Since G, is the sum of posi-

tive semidefinite matrices, the smallest eigenvalue of G,>
smallest eigenvalue of D, 2. Hence

k(G)<N Gyl /( smallest entry of D%

<0(2(14k2+2)L



Having bounded the condition number of the ellipsoid
matrices, we next show that O(L) precision is adequate to
give a sufficient reduction in potential. As described in Sec-
tion 1.4 at each iteration we solve the following problem

min LarTBz +p7z
s.t. (:c—zG)T(GH+GL+Gq)(z—zG) <2r, z€R".
First the Cholesky factorization Gy=LLT

puted. Next L7 B(L™Y)T is tridiagonalized to T using uni-
tary matrices whose product is @. The above computations

and L~ are com-

are performed using algorithms in {2, 8, 9 | with k;L preci-
sion. Let @,, T, , L., and (L), be the computed matrices.
The computed @ and T are used to transform the above
problem to
min %wTTcw +p‘£w
(w_wGE)T(I_FUc Vc +Rc)(w_w0c)gr

as in section where p,, =pTL'QT. This problem is

equivalent to
Problem P’ min —2—w T +Ep)w + (p,+4p,) T w
(w—wg+Awe)T(I+UVHR +Eg)(w—we+Awg)<r

where E;, Er are small error matrices and Ap,, Awg are
small error vectors [8, 9]. Problem P’ is in turn equivalent
to

min 71 T(B+AB)z +(p+4p)Tz, zcR™
s.t. (z—zg+Azg)T (Gy+GL+G +AG z—z5+Az5)<2r
The 2-norms of the error matrices AB,) AG, and the error
vectors Ap, Az, are bounded by 2 (ke=ka)L for some constant

k5. We briefly sketch how the bound is obtained [8, 9]. We

have

laBl, <NLH2 1EN,
Since [(L1)7)2 <2"G‘"1 uET||<0( LY 2|Bl, 27",
we get |AB|,<0(2 (24k,+8 . And

laple <lpl, 1271, 2”"’L < o(attiht)
Also
lacl,<O(lEGNNL13)
<0 (2(2ek,+4—k,)L)
since

1Ecl, < 0UlGyly + 1GL 1, +1G, ) ILHZ275

< O((x(Gy) + G,y + 16, 11))27")

Solving the problem P’ gives a point z, = t+Az where
Az is the error introduced in solving the system of equations
(T+p(I+U,V 4R, ))w=r and in transforming the point
back to the original domain. Thus

Az<n®|GI§ 1A NS w327 + n2lGl, 1 aQl,
<0 (2(76k,+18+3k‘~k,)l,)
kL —k,L . . .
as 27 >u>2 and AQ is the error in each of the unitary
matrices used in the tridiagonalization. The point z gives a
sufficient reduction in potential since the ellipsoid

155

corresponding to Gy+G;+G,+AG is a slightly twisted and
shrunk version of the ellipsoid defined by Gy+G;+G, for a
suitable choice of k;. Also Az is of a much lower order than
27" for ka>77ky+20+4k, and then the point z, gives a

sufficient reduction in potential.

2. Multicommodity Flows

2.1. Introduection

We consider the problem of finding a multicommodity
flow in a directed network (V,E) [3]. The network has a set
of sources S and sinks T, and it is required that source S
send f; units of commodity ¢ to sink T; through the net-
work. Moreover, for each edge e, there is a capacity ¢; which
upper bounds the total of all the commodities that may pass
through that edge. For each of the sets V, E, S and T, we
shall use the corresponding lower case letter to denote the
size of the set.

For each source-sink pair (T}, S;) we add an edge
directed from T; to §;, with an upper bound of f; on the flow
of commodity ¢ through this edge. The goal is to find a flow
such that the flow of commodity i in edge (T, S;) equals the
capacity f;. No augmenting path algorithm is known for
this problem. The multicommodity flow problem is formu-
lated as the following linear program.

Problem MF.

min pTw = Zy,,

i=1
s.t. APz =0 . Flow Conservation
Cz +1ly —zc =0

.. capacity constraints

Em +Ey,+z—20 + 1
t=1 f=]
ch,y:O,ZZO

where

£ER™ is the vector of flow variables. For each edge not
incident on a source or sink vertex there are s variables
each corresponding to one of the s commodities; for an
edge incident on S; or T there is exactly one variable
corresponding to commodity ¢, and the first s co-
ordinates of z correspond to the flows in the edges
(T, S5), i=1,.,5s. ycR® is the vector of slacks.
wl=(zT, y7, 2), and wCRY where N=n;+e+1. cis
the capacity vector upper bounding z. Let n, be the
number of edges incident either on source or sink ver-

o

“=loc,|

tices, and ny=e==ng. where

CeR® ™™ TER™ ™ ¢ cR™”®™ and the i row of
¢/ has I’s in the positions s ({ —1)+1 through s ¢, and

0’s in the remaining positions. A is a block diagonal
matrix with the % block being the incidence matrix of
the directed graph induced by the vertex set consisting
of §; and the vertices reachable from S;, and P is an
appropriate permutation matrix.

If a required flow does exist then the minimum value of
T

p w is zero, and a solution to Problem MF gives the
required flow.



We adapt Karmarkar’s linear programming algorithm
[4] to give a procedure requiring O(s**v%®e L) arithmetic
operations performed to a precision of O(L) bits, where
L =log(d,,,,) +log(}e;) +logN. d_,, is the largest abso-

1
lute value of the determinant of any square submatrix of the
constraint matrix in Problem MF. To get an initial strictly
interior feasible point, we start with small positive flows of
each commodity in each edge such that flow conservation and
capacity constraints are satisfied, and the flow in an edge
(T;,S;) of commodity ¢ is less than f;.

Applying Karmarkar’s algorithm to Problem MF
reduces the global problem to a sequence of O(NL) local
optimizations. Since the optimal value of the objective func-
tion is unknown, a sliding objective function method is
employed without increasing the time complexity. In Section
2.2 we show how to reduce the cost of local optimizations by
eliminating capacity constraints and inverting a matrix of
lower dimension. In Section 2.3 we show how the amortized
cost may be further reduced to give the desired bound on the
total number of arithmetic operations. In Section 2.4 we
describe how an optimum point may be obtained once we
have a point where the objective function value is close to the
optimum value. In Section 2.5 we show that it is adequate to
perform all arithmetic operations in the algorithm to a preci-
sion of O(L) bits. Interestingly enough, the minimum cost
multicommodity flow problem can also be solved in the same
time complexity. The approach outlined in Sections 2.2 and
2.3 extends in a straightforward manner to provide efficient
solutions to similarly structured linear programs, for exam-
ple, those arising in problems with generalized upper bound-
ing and block angular problems {1}.

2.2. Reducing cost of local optimizations

As described in [4], the algorithm generates a sequence

of points w%w!,.... where w® is an initial feasible point as

described before. w**!is obtained from w* by a local optim-
ization as follows.

1) Find a direction w? by solving the local optimization
y P
problem

min pT D w
APD,z =0
CD,z+D,y—cz=0
eTw=0
wlw <1
where D =diag(D,,D,,1), D, =diag (x’l‘,xg,...,zfl )
1
D, =diag(y¥,y%, . .. ,y:), and ¢7 =(1,...,1).
(2) Compute w'=(e/N)+ (aw?/N), where N=dim(w),
and « a constant.

(3) whttl= (Zci +1)(Dw'/eTDw').

The solution w? is given upto a scale factor by
w? =D,p, + BT(BQ'BT)'BQ~'D,p,

I+p,¢™p;*ch, —D,CTD e

where Q= AcTDy"2CD: 1+cTDy_2c )
APD, 0 .
B = b7 d,) by=e,—D,C Dy_ley, d2=1+eyDy_lc

and eT =(e], ey, 1). To express w® in the above form, we

156

first eliminate capacity constraints by substituting for the
slacks y. This transforms the sphere wT w <1 into the ellip-

soid (z7T, 2) @ [ﬁ] <1, and the dimension of the constraint

matrix is reduced from se to sv at the cost of slightly
increasing the complexity of the quadratic constraint. The
equation for w? is then obtained using Lagrange multipliers.

We now describe how to compute the direction w?. We
note that matrices are not explicitly computed unless so
stated. We shall show how to efficiently compute an expres-
sion, comprising addition, subtraction, and multiplication, of
a constant number of matrices, for @ ! and a similar expres-
sion for (BQ1BT)™. Then the direction vector w® may be
obtained using the above equation for w?. In the following
computations we shall repeatedly use the formula [2],

(A+UVTYy 1 =A"t — AU+ vTATIUY VT A,

1. @ can be expressed as D, + U, VT where D, is a block
diagonal matrix, with each block of dimension at most
s, and U, VIT is a matrix of rank 2. Specifically,

D
D1=[0”gl], where D, =I-+D,CTD;2CD,,

- 0...01
d1=1+cTDy %, and UT = [—cTDy_ZC’Dz]’
_ 01
vi=0: (1o}
2. D is block diagonal and can be expressed as
Dyt =I-D.Cc™D,'DIDSMCD,,
onal matrix, in O(se) operations. Then D[' is

where D, is a diag-

expressed as 0_1] in O(N) extra operations.

2.0. Q7! can then be expressed as Q7' =D —U,U,UT,
where U,=DU,, U'=I+VvID['U, and
U,=D{'V,, in O(s ¢) operations.

3. We next note that
BQ BT = BD'BT +(BU,UYBU)T = A, + U VT,
A
where  A,=|"! ‘?3 . A=APD,D;'D,PTAT,
r 0...01
dSZbIY‘Dﬁlbl+d22d;1, Us = bZT h
(BU,Uy)
by
vIi=lo...01| 8 =((APD,D{'5,)T, 0).
(BUY”
4. (BQBT)1 can now be written as

(BRUBT) = Ayt —AJNUI+ VAT U VAL
Once Dl_ll is available as described above, A, can be
computed in  O(s’e) operations. We have
A=A —Ap, where A =APDPTAT,
Ay, =APDECTD'DID;'CDEIPTAT. APD, is a
weighted graph incidence matrix wita O(s e) entries,
hence A ,; has O(s ¢} entries and is computed in O(s ¢)
operations. An entry in A, is either the product of the
weighted flows of two commodities in an edge, or for a
fixed pair of commodities the sum of such products
corresponding to all edges incident on a vertex. So A,
is computed in O(s%e) operations. A;! and A, are
then computed in O(s®v®) more arithmetic operations.



5. AU, A7V, and (T + VIAFIU) ™ require O(s?v?)
operations once AZ_I is available, and the direction vec-
tor w? is then obtained in O(s%®+se) additional
operations, wusing the computed

(BQ—IBT)—l-

expression for

2.3. Reducing the amortized complexity
The complexity of Problem MF may be further reduced
by using an approximation D 4 to D in the local optimization

problem solved at each iteration. Let w* be the point at the
end of the (k—1)" iteration. At the start of the k* iteration
D , is computed as follows.

(1) Dp=(N"! Z(wf/wf))D 4.

(2) For _ _ t=1,2,...,N,
i (D) <wf/V2Z or (Dy)y>V2uwk) then
(D )i = wf.

(3 ¥ ( k is a multiple of [Nq ) then

L, wh).

Modifying an element of D 4 in Step 2 leads to a rank one
change in A, and hence in A;?, and this change can be com-
puted in O(s%v?) operations. We reset D, in Step 3 since
just modifying D 4 in Step 2 leads to an excessive number of
rank one changes in A,. Whenever D, is reset, we recom-
pute AT? as deseribed in the previous section in O(s® v3)
operations. Once A[! is available, the direction vector w?
can be obtained in O{s?v?) additional operations as
described in Section 2.2. We note that even though D, is

used instead of D, the number of iterations is still O(N L)
(4]-

D,:= diag (w¥ wk, ..

Lemma. Between successive resettings of D , in Step
3, the total number of modifications to D, in Step 2 is
O(N%), if §<1/2.
Proof. Let n; be the number of times (D 4);; is modified in

Step 2 between successive resettings in Step 3. Let
dF = (N7 3wk /wi ™)) wf/ wk!, bE =10(dF), J* the set of

1
those  indices ? such that ld,-"—l' > (8 [N’S])—l ,
mo=1k:0<k<[NOL €U ), 0, =1k:0<k<[N] ig J* ).
As (D 4); is modified whenever the product of succes-

sive (dF)'s exceeds V2 or falls below 1/V2, we have

_ IV
n InV2 < 3 M.

k=
As 2 1h,k|§ 1/2, n; >1 implies
ke,
n, InvV2<2 ¥ |h,-’°|.
kem;
Also, }} |nH
ieJ]’\‘,
< Srk—(ab -1+ 57 lak—1l
=1 s ,’e]"
<0 s[N.
<zt [NI8

In [4] it is shown that (i) }7(df—1)2 < 47 for some

N ﬂ2
constant g, (i) S7IhF-(df-1)l< —F—

, and
i1 2(1-P)
J(dF—1)? < B implies ) ld¥—1]< 8[N?]8.
oy , ieJt
So, I, < X X InHl= o(v¥p).
i=1 k=1 jeJ*
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From the Lemma it follows that the total complexity is
OENl_ﬁ(s o3 + N5 )2 L) operations. Choosing
N° = (5 v)®® gives the desired complexity of 0(s**v*%e L)
operations as N=0(s e).

2.4. Jumping to the optimal solution

In this section we describe how to obtain an optimal
solution to the multicommodity flow problem, once we have
a feasible point where the objective function value is very
close to the optimal value.

Let 6<2—k1L, for a suitable constant k,. Suppose we
have a point w’ =(zT, y7, z) such that
1. The objective function value at w differs from the
optimum by at most e.

2. Tlow conservation at each vertex is violated by at most
€.
3.  The flow of each commodity in each edge is at least e.

4, The sum of the flows in each edge does not exceed its
capacity by e.
From w we obtain another solution w’ by the following pro-
cedure. Let G; be the subgraph induced by those edges in
which the flow of commodity i is at least ¢, and the total
flow is not within ¢ of capacity. If G; contains a cycle, we
push flow of commodity ¢ around the cycle {(without increas-
ing the objective function) till the flow of commodity ¢ in
some edge goes to zero or the total flow in some edge reaches
capacity. We repeat this process till each G; is a forest.
Obtaining W' takes O(s® e?) operations.
Define a system of linear equations as follows.
1. Include all equations defining flow conservation.

2. If the flow of commodity ¢ in an edge is at most ¢ then
equate the corresponding variable to 0.

3. If the total flow in an edge is within € of capacity then
equate the sum of the flow variables corresponding to
the edge to its capacity.

As each G, is a forest the matrix describing this system of
linear equations has independent columns, and the system
then defines an optimal vertex [2, 7] {even though it may be

over determined).

2.6. Precision of arithmetic operations

We shall use k,, k,,.... to denote constants. The compu-
tations during each iteration are performed to a precision of
kiL bits, and at the end of each iteration, each co-ordinate
of the new point obtained is rounded to the smallest multiple
of 27 larger than the co-ordinate. Because of rounding, at
each iteration we work with a linear program where each
constraint may be violated by at most €. At each iteration, ¢
increases by at most N2ﬁk’L, and we may choose k, so that
e<27" when we jump to the optimal solution. It is ade-
quate to show that the condition numbers of the matrices
arising in the computation are bounded by 2k‘L, we can then
choose an appropriate k3 >k,. It is easily seen that the fro-
benius norms of CTC, AAT and the 2-norm of ¢ are
bounded by 2¥. Moreover, each of Ip "F , |p-1 ||F, is at most
gl ey k(R) denote the condition number of R
(x(R) =R, ”R“W[Z) By the repeated use of
w(R R RT) < k(RRT) k(R,), it can be shown that x(D,,),
k(Dy), k(A,) and k(A ,) are bounded PR



As @ is obtained by

intersecting the
2Tz +yTy+22<1 with

the afline

sphere
space
CD,z +D,y ~2zc =0 and then projecting onto the space of

(7, 2), 5(Q) <ID/ 2l e leT el < 2P+ F,
To bound «((BQ'BT)™') it is then adequate to bound

APD
x(BBT). : 0

We b, dyl

have B = where

B

By =APD, and let wT =(w], w,) be a unit vector. Let b,,
be the component of b, in the column space of By, and b,
the component in the orthogonal complement of the column
space of By,. For simplicity let us assume that during local
optimization we work with a D whose entries have been
rounded to powers of gkt (this does not change the com-
plexity of the algorithm). Then HbIZIL > 2-"’1’, for some kg,
since we can find a basis for the null space of BIT1 with
rational co-ordinates. We outline an argument to lower
bound "BlTw l,. We have Biw = Bliw, +w by +w by As
By, is a graph incidence matrix with its columns weighted by
. . T —(2ky+2)L
entries from D, it follows that ”BuwIIL >2 "wluz
Moreover, ”lzulL <ol < gkt 2L e
depending on the magnitude of w,. If w, >2

”wnbw'L > g kot Skt S ; otherwise
”Bllel +"’nb11lL 2z g (Pt AL =1 So if we let k; =5k,+ks+6,
then both wT(BiBlT)w, wT(BBT)w, are at least 2~ 7L, and
(ks + 4)2 and it then that

have two cases
~(5k,+5)L then

at  most 2 ,
IC(BBT) <2(k,+4k,+4)L‘

Finally, we must show how to control the error increase
in Al_1 during rank one updates without paying an excessive
penalty in number of operations. Suppose we have an
approximate inverse A,' of A, such that A A,/=T+E,.
(A +uvT)7 ! is computed as follows.

{ollows

1. Compute an initial approximation
=AY = (Ae)(A))T /(1 +uT 4)1))

2. (A +uwT){A") =1+E +E,, where £, is a constant
rank matrix computable in O(s%v®) operations. The
required approximate inverse is A;"—E, and
(A +uvT) (A —B,)) = [+ E,—Ey(E\+E,).  So the
error term is about E, if we choose k, and k; so that
EZ is of lower order than E|.

3. Conclusions

We have extended Karmarkar’s interior point method
to give an efficient algorithm for Convex Quadratic Program-
ming. This approach is also applicable to minimizing other
convex functions over polytopes provided these functions can
be efliciently minimized over ellipsoids. We have also
described how Karmarkar’s algorithm can be speceded up for
the Multicommodity Flow problem. The technique used here
extends in a straightforward manner to similarly structured
linear programs.
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Appendix

Sliding Objective Function Method

We shall show that the number of iterations in the algo-
rithm in Section 1.3 is bounded by O(NL). Let LOW,,
HIGH;, and u;, denote the value LOW, HIGH, and the
threshold u, during the jth stage. At the jth stage we meas-
ure potential w.r.b the guess 9; where
g9; =LOW; +c,(HIGH;—LOW;). ' Moreover,
u; =LOW; +¢c,(HIGH;~LOW,). Let 2z’ be the point at the
beginning of the jth stage.
Case 1. ¢; 1> 9; -
Then LOW,,=y;, HIGH, ,; = HIGH;.

Case 1.1 (/™)< f (2" .

f(zj“) —9in < f(zj“) —9;
f(zo)_gj+1 f(lo)‘y,'

Case 1.2. f(2ItY)> (2% .
Then 9i41=9; +cl(HIGHJ;+1——yj), . and
f(2) =i 2 ((29) —g;)(L—cy) since  f(2") 2 HIGH ;.

Hence

f(zf“)—g]. 1
f(lo)"gj (T—cy)

f(zj+l)_gj+1
f(lo)*.‘ljﬂ

Case 2. g;1<¢; -

This case occurs when the objective function value becomes
less than or equal to the threshold u;. We may assume that
HIGH, y =u;; otherwise we proceed through a sequence of

dummy stages jH1, e 7+, such that
HIGH; ;y=u;, ... y HIGH, (o =1 4 o, HIGH; 2 v 4y

For each  of these stages we have
HIGH, ; zf(zl-fl-‘rl) > pis LOW,-+.-+1 =LOW,,,, and

9irip1 < 9j4i- Hence,

f(zj““)‘yﬁin < f(EH “it+it

f(zo)—95+s+1 f(zo)”.‘lpr.‘
f(zjﬁﬂ)”gjﬂ‘ eg(l —cy)
f(zo)_gj-ﬂ (cg—cy)

Suppose at each iteration in the jth stage we get a

N
decrease of at least § in the potential J In( j__z(_{l) Then
i=1 i
after 7 stages we have

) =g 2™
nin{ —————27 ) — ¥Y'In( —
( f(zo)_gj+1 ) ; ( z! )
j . co(l—¢q)
§~l§ 8,6+ n j max(—In(l —¢,), In{ ~[—C;—E—;)——))

where s; is the number of iterations in the lth stage. Within
O(L) stages the difference HIGH —LOW falls to 279%) and
by the above inequality the number of iterations in O(L)
stages is O(NL). Once HIGH —-LOW is 9-6(L) we have a
good enough guess for the optimum value /4 of f(z), and we
generate a sequence of points keeping HIGH, LOW, and the
guess for f,, fixed, till we obtain a point where the objective
function value is at most 2 8%) away from HIGH.
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