
Mathematical Programming 73 (1996) 111-127

Speeding up Karmarkar's algorithm for
multicommodity flows

Sanj iv K a p o o r l , Pravin M. Vaidya *
Department of Computer Science. Unive~wiO, of Illinois at Urhana-Champaign, Urbana. IL 61801, USA

Received 29 February 1988; revised manuscript received 25 September 1990

Abstract

We show how to speed up Karmarkar's linear programming algorithm for the case of multicom-
modity flows. The special structure of the constraint matrix is exploited to obtain an algorithm
tbr the multicommodity flow problem which requires O(s3SvZ5eL) arithmetic operations, each
operation being pertbrmed to a precision of O(L) bits. Here v is the number of vertices and e is
the number of edges in the given network, s is the number of commodities, and L is bounded by
the number of bits in the input. We obtain a speed up of the order of (e~ ~ + (eZS/J-Ss "-)
over Karmarkar's modified algorithm which is substantial for dense networks. The techniques in
the paper can also be used to speed up any interior point algorithm for any linear programming
problem whose constraint matrix is structurally similar to the one in the multicommodity flow
problem.

Keywords." Multicommodity flows; lnterior point methods; Linear programming

1. Introduct ion

In this paper we study the problem of finding a multicommodity flow in a directed

network (V,E) [4]. The network has a set of sources S and a set of sinks T and it is

required that source Si send f i units of commodity i to sink ~ through the network.

(Note that S _C V, T C_ V.) Moreover, for the itb edge there is a capacity ci which upper

bounds the total of all the commodities that may pass through that edge. For each of

the sets V, E, S and T, we shall use the CO~Tesponding lower case letter to denote the

size of the set. (The symbol e will be used to denote the number of edges as well as

the vector of all l 's ; the intended usage will be clear from the context.)

* Corresponding author. Research supported by a fellowship from the Shell Foundation.
Resem-ch supported by NSF under grant NSF DCR-8404239.

0025-5610 @ 1996--The Mathematical Programming Society, Inc. All rights reserved
SSDI 0025-56 10(92) 00005-7

112 S. Kapoor P.M, Vaidya/Mathematical Programming 73 (1996) 111-127

For each source-sink pair (T/, &) we add an extra edge directed frona Ti to S,., with

an upper bound of f i on the flow of commodity i through this edge. The goal is then

to lind a circulation such that the flow of commodity i in edge (Ti, Si) equals the

capacity j).. No augmenting path algorithm is known lbr this problem when the number

of commodit ies exceeds 1. The mult icommodity flow problem may be formulated as the

following linear program:

MF: min PTw = Yi,
i= 1

s.t. APx = 0 (flow conservation),

Cx + ly - zc = 0 (capacity constraints),

~ ~ . z t Yi q- Z = ci + 1,
i=1 i=1 i=1

x ~ > 0 , y ~ > 0 , z >~0,

where:

(1) .v E R"' is the vector of flow variables. For each edge incident to a vertex other

than a source or a sink (i.e., for each edge incident to a vertex in V - (T U S)) there

are s variables, each variable corresponding to one of the s commodities; for an edge

incident to 5", or Ti there is exactly one variable and this variable corresponds to the

flow of commodity i in the edge. Moreover, the first s co-ordinates of x correspond to

tim flows in the edges (Ti, Si), i = 1 ~.

(2) 3' E R" is the vector of slacks.

(3) z is an extra variable that takes on the value 1 for any feasible solution.

(4) w T = (xT ,yT , z) and w E R ~v where N = h i + e + 1.

(5) c ~ R" is the capacity vector upper bounding x. The capacity constraints Cx +

ly - zc = 0 upper bound the total flow of all commodities that may pass through each

edge.

(6) Let n2 be the total number of edges incident to vertices in TU S, and n 3 = e - n 2 .

[/~ C = 0 C, '

where C C _~"• I C R "2• is the identity matrix, CI C R ''~• and the ith row of Cj

has l ' s in the posit ions s(i - 1) + 1 through si, and O's in the remaining positions.

(7) A is a block diagonal matrix with s blocks. The ith block of A is the node-

edge incidence matrix of the directed graph induced by the vertex set consisting of Si

and the vertices reachable from Si. P is an appropriate permutation matrix. The flow

conservation constraints APx = 0 state that for commodity i, 1 ~< i ~< s, the flow of

commodity i into a vertex equals the flow of commodity i out of the vertex for every

vertex.

(8) The objective function pTw is the sum of the slacks in the edges (T, ,S/) , i =

l , . . . , s .

S. Kapoo#: P.M. Vaidya/Mathematical Programming 73 (1996) 111-127 113

(9) The normalization constraint 7)]'i '1' xi + ~i"=l Yi + z = Y~,i<=l ci + 1 is obtained by
summing the capacity constraints and combining this with the requirement z = 1.

Note that the above formulation of the multicommodity flow problem is not the
standard one but rather one which is explicitly in Karmarkar's form [6]. Furthermore,
if a required multicommodity flow does exist then the minimum value of pTw is zero,
and an optimal solution to problem MF gives the required flow.

Let L = log(detmax) + l o g (~ i c i) + logN, where detmax is the largest absolute value
of the determinant of any square submatrix of the constraint matrix in problem ME We
give an algorithm for the nmlticommodity flow problem (i.e., for problem MF) which
requires O(s3'Su2SeL) arithmetic operations, each operation performed to a precision of

O(L) bits. The algorithm is an adaptation of Karmarkar's linear programming algorithm
[6]. Note that solving the multicommodity flow problem directly using Karmarkar's
modified algorithm (which incorporates rank one updates and exploits the sparsity of
the constraint matrix while forming ADA T) takes O((s3'Su2el5+ slSe3S)L) arithmetic
operations. Thus we obtain a speed up of the order of (e~176 + (e25/u2Ss2) over

Karmarkar's modified algorithm which is substantial for dense networks. The techniques
used in this paper to obtain a speed up for multicommodity flows can also be utilized to
obtain speed ups for similarly structured linear programs, for example, those arising in

problems with generalized upper bounding and block angular problems [1,2]. For block

angular problems, ideas similar in spirit to some in this paper have been used in [1] to
reduce the work for projection computation at each iteration, but without any specific
analysis.

In Section 2 we give a brief overview of the two key techniques that are used to

speed up Karmarkar's linear programming algorithm for the case of multicommodity
flows. In Sections 3 and 4 we give a description of these techniques. In Section 5
we show how to exploit the underlying structure of the multicommodity flow problem
to obtain a procedure for quickly finding an optimal solution once an approximate
optimum is available. In Section 6 we give some concluding remarks. Finally, the
techniques in Sections 3 and 4 can be also applied to the linear programming algorithm
in [1l] (instead of Karmarkar's algorithm), and this gives a slightly faster algorithm
for the multicommodity flow problem which requires O(s3uZSe~ + s3u2e) arithmetic
operations. The details of this slightly faster algorithm will be left to the reader.

We shall conclude this section with a short discussion on obtaining a starting point
and measuring convergence. An initial strictly interior feasible point can be obtained
by assigning a small positive flow of each commodity to each edge such that flow
conservation constraints and capacity constraints are satisfied, and the total flow of all
the commodities in an edge is strictly less than the capacity of the edge. As in [6]
convergence is measured by means of the potential function ~iNl ln(pTw/wi). We shall
briefly describe how the initialization may be done so that the potential at the initial
point is O(NL). First, assign a flow value of l /2se of each commodity to each edge.
This results in an incoming surplus at some nodes and an incoming deficit at some
other nodes; the total surplus of a commodity i at all nodes (except source Si and sink
Ti) is at most l /2s. The surpluses and deficits of commodity i may be eliminated by

II4 S. Kapoor, P.M. Vaidya/Mathematical Progrnmmi~ g 73 (1996) 111-127

repeatedly finding: (i) a directed path fl'om source S/ to a node with incoming deficit of

commodity i, or (ii) a directed path from a node with incoming surplus of commodity

i to sink Ti, or (iii) a directed path from a node with surplus of commodity i to a node
with deficit of commodity i. By pushing flow along such a path the number of nodes
that have deficits/surpluses of commodity i may be reduced by one. Once the surpluses

and deficits of all the commodities have been eliminated, the flow of each commodity

i Moreover, since all capacities are assumed in each edge is at least 1/2se and at most f.
to be integers, each slack y, is at least ~-.l It is then easily seen that the initial value of

the potential ~,.N I ln(pTw/wi) is O(NL) . It is also straightforward to implement this

initialization procedure in O(sl,e) time.

Note that if the minimum value of pTw over the feasible region is zero then at each

iteration the value of the potential function is reduced by a fixed constant, whereas if

during some iteration the potential cannot be reduced by a constant then the minimum
value of pTw is guaranteed to be greater than zero and the given nmlticommodity flow

problem is infeasible. For details the reader may refer to Section 3.1 in reference [6] .

At this point we also note that a preliminary version of this paper appeared in [5].

2. An overview

Applying Karmarkm-'s algorithm [6] to problem MF reduces the global optimization
problem to a sequence of O (N L) local optimizations over ellipsoids. The algorithm for

the solution of problem MF is an iterative algorithm with O (N L) iterations, and the

local optimization during each iteration consists of minimizing a linear function over an

ellipsoid. Let

W k = V k

be the point at the beginning of the kth iteration, where (xk) 'r = (x~,x~, . . . , x k,~) and
(vk) r .~k k k . = t.'l ,Y2 y,,). Let ce be a constant less than ~. During the kth iteration w ~+~
is obtained from w k as follows.

Step 1. Find a direction w J by solving the local optimization problem

s

rain pTDw = Z (D y) i i Yi
i=1

s.t. APDxx = 0 (flow conservation),

CD, x + Dyy - cz = 0 (capacity constraints),

eTw = O,

wSw <~ 1,

S. Kapom; t~M. Vaidya/Mathematical Programmb~g 73 (1996) I 11-127 115

where e "r = (1 1) and D, Dx, and D.r are diagonal matrices defined by D =

diag(Dx, D,., 1), D.,. = diag(x~, x~, . . . , x,~,~), D,.. = diag(y~, y ~ yek).
Step 2. Compute w' as w; := (1 /N)e + (offN)w 't.
Step 3. w ~+1 := (~-~.ici + 1)(Dw;/eTDw').

The speed up lbr multicommodity 1lows is obtained by the application of two key ideas

(techniques). The first idea is to utilize the special nature of the capacity constraints to
reduce the dimension of the problem that is solved at each iteration. This technique is
similar to the one used in problems with upper (lower) bounds. A direct solution of the
local optimization problem in Step 1 above involves inverting an (st., + e) x (st; + e)
matrix. However, the special structure of the matrices CDx and D~. can be exploited
to reduce the above local optimization problem to the problem of inverting a matrix
Ai of dimension sv. (Note that for a dense graph c, is much smaller than e.) Tiffs
reduction is described in Section 3. Specifically, Ai = APD~D~IDxPTA T where Dll =

1 +D.~CVD.~?2CD,.. It is shown in Section 3 that Al can be computed from D in O(s2e)
arithmetic operations, and that once (A~) - I is available, w J and w k+~ can be computed
in O(s2v 2) operations.

The second idea is to balance the work required to directly invert Ai and to update
(A~)-1 via rank one changes over the entire course of the algorithm. As in [6] we

work with an approximation Da to D such that (Da)ii E [(D)i i /v~, V~(D)ii]; this
corresponds to replacing D by D.a in the expression Ibr Aj. In Section 3 we show that
an update of an entry in D j leads to at most a rank five change in A I and thereby
to at most a rank five change in (A�91 -1. This constant rank change in (A1) -1 can

be computed in O(s?v 2) operations using the Sherman-Morrison-Woodbury formula
[3,10]

(G + U V T) 1 =G-I - G - I U (I + VTG-IU)-IVTG-L.

Thus if m of the entries in D j are updated during an iteration then suitably updating
A~ -I requires O(min{ms2c 2, $3U3}) operations during the iteration. In other words, if

m >> sv then during the iteration it is more efficient to compute A ~-I by directly inverting
A I rather than performing m rank one changes. This discrepancy allows us to improve
the time complexity by balancing of the number of operations as follows. Let 6 be a
parameter.

(a) Whenever the iteration number k is a multiple of [N'~], we compute (Aj) -1
by directly inverting AI in O(s3v ~) operations. Since the recomputation is performed
O (N I -'SL) times, the total number of operations for recomputation is O (N 1-6s3133L).

(b) Between successive recomputations of (A 1) -1 we maintain (AI) - 1 by perform-

ing rank one changes. By the Update Lemma in Section 4, there are at most O (N 26)
updates to the entries in D,~ between successive recomputations of (Ai) -1. Conse-
quently, there are at most O (N 26) rank one changes to (Al) - I between successive
recomputations. Since there are O (N I - 6 L) recomputations, the total number of rank
one changes to (AI)-1 during the entire algorithm is O(NI+6L), and this leads to a
total of O(Nl+6s2v2L) operations for updating (A j) - I via rank one changes.

116 S. Kr I~M, Vaidya/Marhematical Programming 73 (1996) 111-127

Choosing N a = (st ') ~ balances the operations in (a) and (b) above, and leads to a

total of

O(N I -S s-~v3 L) = O(N l +a s2v2 L) = O(s3 5 t~e S e L)

arithmetic operations for maintaining (AI) - i , since N = O (s e) .

The balancing techniques described here are quite general and are applicable whenever

the constraint matrix may be expresed as (~le) where B, has much fewer rows than B2

and B2 has a special structure. Moreover, since the idea is to trade-off reinversion versus

rank one updates it can be applied in the context of any interior point algorithm for

linear programming.
We can account for the time complexity of the multicommodity flow algorithm as

follows. In O (N L) iterations we either obtain a point ~/,' such that p'I'~, ~< 2-OIL) or

obtain a proof that the minimum value of the objective function in problem MF is strictly

greater than zero which means that the given multicommodity flow problem is infeasible.

Once ~i~ is available, an optimal solution to problem MF and a feasible multicommodity

flow may be found in O(s3v2e) operations as described in Section 5. The total number of
operations for maintaining (At) -1 for O(NL) i~erations is O(s-~sv2SeL), and O (s 2 t ;2)

operations are spent in computing w k-~l from w k once (A i) - I is available. Thus the

total number of arithmetic operations performed by the multicommodity flow algorithm
is O (s 3 S v 2 S e L) .

3. Reducing cost of local optimizations

In this section we shall show how the special structure of the capacity constraints may

be exploited to reduce the local optimization problem at each iteration to the problem of
inverting a matrix A] of dimension sv. Throughout this section I will denote the identity

matrix of the appropriate dimension. (The dimension will be clear from the context.)

During the kth iteration w 'k+l is obtained from w k as follows.

Step I. Find a direction W d by solving the local optimization problem

s

rnin p ' rDw = Z (D y) i i Yi
i= I

s.t. APD, .x = 0 (flow conservation),

CDxx + D.~,y - cz = 0 (capacity constraints),

e T w = O,

wTw ~< 1,

"or k k 1ok "or k k k -- y~,), where D = diag(D,. ,D,. , 1), D, = dlae,(xl,x-7,.), D~. d,a~(,,q,y
e T (1 1), and e v T T = = (e~,e s , l) .

S. Kapom; I~ M. Vaidya/Mathematical Programming 73 (t 996) 111-127 I 17

I Step 2. Compute w ~ = (1 / N) e + (c e / N) w a, where w E 11~ N and oL < g.

Step 3. w ~'+l = (~-~i ci + 1)(Dw' /e rDw') .

Eliminating the capacity constraints by substituting 3' D ~ . I (- C D , . x -r c ,) reduces
the local optimization problem in Step 1 above to

rain p~(- C D x x + cz)

s.t. B (X) = 0 ' z

(x T ' z) Q (X) ~< . ' z

where

- - T - - ? " " " B = " ,
- c D y - C D x 1 4- cYD~-2c ' b T d2

bl = ex - DxCTD~,le~., d2 1 -~- eTDylc, e T T T pT . . = = (e x,e~,, 1), and = (p~,pT,pz) .

Eliminating the slacks y transforms the sphere wTw ~ 1 into the ellipsoid

(x T ' z) Q (X) ~< I ' z

and the dinaension of the constraint matrix is reduced from su + e to sv at the cost of
slightly increasing the complexity of the quadratic constraint. (Q is expressible as the
sum of a block diagonal matrix plus a rank two matrix.) Let

By the theory of convex functions and Lagrange multipliers [13], the solution (~',;) to
the reduced problem is given up to a scale factor A by

A z j = (1 - Q - I B T (B Q - I B T) I B) Q - t p~c ' (i)

and 3, ~l is given by

d) '~1 = D~. 1 (- C D x x J + z c) . (ii)

Next we shall show how to efficiently obtain expressions for Q-1 and (B Q - 1 B T) -1

which involve the addition, subtraction, and multiplication of a constant number of
matrices. The direction vector w ~l may then ber obtained using the above equations. In
the following computations we shall repeatedly use the Sherman-Morrison-Woodbury
formula [3],

(G + UV T) - i = G - I _ G-~ U(I + V'r G - I U) -~ VT G -1 .

118 S. Kapoor, P.M. Vaidya/Mathematical Pivgramming 73 (1996) / 11-12 7

1. Q can be expressed as Q = DI + Ul V~, where DI is a block diagonal matrix with
each block of dinaension at most s, and Ui V(r is a matrix of rank 2. Specifically,

D , = (D , , O)
0 dl "

where DII = I + D,Cr D~72CDx, dl = 1 + cT D~72c, and

U ~ = (() . . - 0 1) (-c'rD~72CD~. O)
-cTD.~7-'CD, 0 ' VII= 0 . . . 0 " 1 "

2. Let D,,. be the diagonal matrix given by D~,. = (1 + D~71CD~Ca'D.~TI) -]. Note that

D~. is computable in O(se) operations. Then D~ I can be expressed as

DII 1 = 1 - D.~CTD]ID~.D~-ICDx

in O(se) operations. Note that D[II is a block diagonal matrix, with each block of
size at most s, and explicitly computing all the entries in DTi I would require O(s2e)
operations. However, we do not explicitly compute all the entries in D~ I. Each block
in D~ t may be represented as an identity matrix minus an outer product of vectors,
namely as I/, - rr~r 'r where 1~ is the p. x /x identity, rr is a /x-dimensional vector

and # ~< s. For each block we compute only the corresponding vector rr rather than
explicitly computing the outer product rrrrT; the block is implicitly represented by the
vector yr. Such a representation of DIll I has O(se) non-zero entries and is computable
in O(se) operations. Since the only computation in which D~l I is involved consists of
multiplication by some other matrix this representation is adequate. Next, computing
dl = I + c'rD,.2c requires O(e) operations, and thus D~ -I can be expressed as

in O(se) operations.
3. Q - I can then be expressed

Q-I = D I I _ U2U3U~ = (
k

1 D~.CID71 ~] - D~.D~, CDx 0
' 0 " d ~ l)

a s

I - DxC T D v I D~.D.~. l CDx
0

0 '] - U~ U~U]'.
d ~ - t / - .

where U2 = D[IUj , U3 = (I + V]TD~-IUI) -], and U4 = D~iVI, in O(se) operations.
This is because Ut and V] are computable in O(se) operations, and using the expression
for D I I in 2 above, U2, V~D[IUI, U3, and Ua are also computable in O(se) operations.

The above expression for Q - l contains O(se) non-zeros.
4. We next note that

BQ-]B T = BD~]B T + (BU2U3)(BU4) T = A2 + UsV5 T,

where

A2= (A , 0) A, =APD.,D~ID~.pTAT d3=b . [D~ib i+d~d~ ,
0 d3 ' - '

S. Kapoor, P.M. Vaidya/Mathematical Programming 73 (1996) 111-127 119

uT5 = bT , V; r= 0 . . . OT1 , b T=((APD~DTI'bl)T,O).
(BU2U3) T (BU4)

We observe that once U2, U3, U4 are available, U5 and V5 can both be computed in

O(se) operations since both B and the expression of D~ I in 2 above contain O(se)
non-zero entries. Also, d3 is computable in O(se) operations.

5. (BQ-IBT) -I can now be written as

(BQ-I BT) -I = A21 - A2Ius(I + V~r A~IU5)-IVT A2 I.

We shall show four properties of Al. First, once A~ -I is available, the direction w a
may be obtained in O(s2L, 2) extra operations. Second, Al can be computed from D in

O(s2e) operations. Third, an update of an entry in D leads to at most a rank five change

in AI and thereby to at most a rank five change in A~-t; this change in Al and A~ -I is
computable in o(sev 2) operations. Four, if each entry in D is multiplied by a scalar 0

then each entry in At gets multiplied by 02; so if D is changed by a scale factor then

,41 also gets changed by a scale factor. (As mentioned in Section 2, to reduce the time
complexity we work with a suitable approximation Da to D which is defined in Section

4; this corresponds to replacing D by Dj in all the expressions derived in this section

and tile four properties of AI hold with D replaced by Da.)

First, we show that once A~ -I is available, the direction w a can be obtained in O(set, 2)

operations. As noted in 4 above, computing d3, Us, and V5 requires O(se) operations. So
once A71 is available, A2 I, VTA~_IUs, and the expression in 5 above for (BQ-IBT) -j
can be obtained in o(sev e) extra operations. Moreover, the expression in 3 above for

Q- i is also computable in O(se) operations. Then since both B and the expression for

Q- t in 3 above contain O(se) non-zeros, fi'om equations (i) and (ii) it follows that w ~l

can be computed in O(sZv 2) additional operations. Thus once A~ -I is available, finding
the direction w d takes O(s2v 2) arithmetic operations.

Next, we show that computing AI from D requires O(s2e) operations. Note that D~ I
T - 1 2 -

c a n be expressed as D~ l = I - DxC Dy D,.Dy ICDx in O(se) operations. Also, Ai =

APDxD~JDxpTA T. Thus AI may be written as AI = Aj I -AI2 where All = APD2pTA T,
and A:_ = APD~C'rD?.~D~,DT~CD2pVA v. We shall describe how to obtain each of a~1
and Ai2 in O(s2e) operations.

(a) APDx is a block diagonal matrix with s blocks, the ith block being a weighted
node-edge incidence matrix corresponding to commodity i. The dot product of two rows

in distinct blocks of APDx is zero. The dot product of two distinct rows in the same block

of APD.~ is non-zero only if there is an edge between the two vertices corresponding

to the two rows, and this dot product can be evaluated in 0 (1) operations. So we

may conclude that All has O(se) non-zero entries, and can be computed in O(se)
operations.

(b) Each column of APD2CTD~IDw corresponds to an edge and is a weighted sum

of the O(s) columns of A that correspond to the O(s) flow variables for the edge. Since
each column of A has 0 (1) entries, each column of APD2CTD~71Dw has O(s) entries.

120 S. Kapoot; P.M. Vaidya/Mathematica I Programming 73 (1996) 111-12 7

There ~ e s rows in APD~CrDy-JD,,, con'esponding to a vertex in V; the dot product of

two rows is non-zero only if there is an edge between the two vertices corresponding

to the two rows 0," the rows correspond to the same vertex. The dot product of two

rows con'esponding to distinct vertices with an edge between them may be evaluated in

O(I) operations; the dot product of two rows corresponding to the same vertex may

be evaluated in a number of operations proportional to the degree of the vertex. Thus

we may conclude that AI2 has O(s2e) non-zero entries and is computable in O(s2e)

operations.

Thus At can be computed from D in O(s2e) arithmetic operations.

Third, we show that modifying an entry in D leads to at most a rank five change

in AI and in A~ -I . Now suppose that an entry in D is modified. This can lead to the

update of at most a single entry in D.2~, and hence to at most a rank one change in A~I

since All = APD~PVA r. The modification of an entry in D leads to the modification

of at most a single entry in D~., since D~. is diagonal and can be written as D~. = (I +

D;-ICD~C~D[71) -~. Also, the modification of an entry in D can lead to the modification

of either an entry in D,2 or D[71 but not both. Thus an update of an element of D leads to
2 T -- 1 9 - I 2 T T at most a rank four change in AI2, since AI2 = APDxC D,. DAD,. CDxP A . Hence,

At can change by a matrix of rank at most five. In other words if A' 1 is the new matrix

obtained by changing an entry in D then A' I is expressible as

A', = ,4~ + UV r,

where U and V each have at most five columns, and are both computable in O(s2e)

operations�9 Furthermore, a rank five change in A, can lead to at most a rank five

change in A~ -I and this change is computable i n O (s 2 u 2) arithmetic operations using

the Sherman-Morr i son-Woodbury formula [3,10].

Finally, suppose each element of D is multiplied by 0. Then Dl j remains unchanged

since Dit = I + DxCTD~72CDL., and each entry in At is mult ipl ied by 02 since AI =

APD.~D~IDxPTA T. Thus multiplying each entry in D by a scalar 0 is equivalent to

mult iplying each entry in A~ by the scalar 0 e.

4. Balancing the number of arithmetic operations

In this section we show how to balance the number of arithmetic operations required

to directly invert Ai and to update A~ -~ via rank one changes over the entire course

of the algorithm. As mentioned in Section 2 we use an approximation Da instead

of D in the local optimization at each iteration. D~ satisfies the condition that for

1 <. i <<. N, (D.a)ii E [(D)i i / 'g2, v/2(D)~i], where D = diag(w~,w~ w~v) and

w = (w~, w~ w~) is the point at the beginning of the kth iteration. We note that

even though D~ is used instead of D, the number of iterations in the algorithm is still
= 0 0 O(NL) [6] . Initially, D j (~ j , w 2 w~ At the start of the kth iteration D j is

modified as follows. Let 6 be a parameter.

S. Kapom; PM. Vaidya/Mathematical Programming 73 (1996) l I 1-12 7

Step 1. Da := ((l / N) ~ i N = i (w f / w f - I)) D j .

Step 2. F o r / = 1,2 N, if (Dj) i i ~ [w~/'v/2, v'~w~] then (n,a)ii = wf.
Step 3. If k is a multiple of ~X 's] then Dj := diag(w k, w k w~).

121

In Step 1 Da is modified by a scale factor and as a result A1 and A71 are changed

by a scale factor as described in Section 3. Modifying an element of D,j in Step 2 leads
to at most a rank five change in A~ and in A~ -I as was shown in Section 3, and this
change can be computed in O(s2t. ,2) operations. Da gets reset in Step 3 whenever the

iteration number k is a multiple of [-Na], and A~ -I has to be recomputed whenever D~
is reset. The parameter 8 determines the trade-off between the number of operations

for recomputing A1 and the number of operations for maintaining A~ -I via rank one

updates.
The total number of operations for maintaining A~ -I during the entire course of the

algorithm is obtained as follows. Whenever Dj is reset in Step 3, we recompute A~ -1 by
directly inverting A I in O(s3t~ ,3) operations. Between successive resettings of D,a in Step
3 (i.e., between successive recomputations of A~-l), A~ -l is maintained by performing
rank one updates at the cost of O(s2v 2) operations per rank one update. Since the
recomputation of A~ -~ is performed O(N~-~L) times, the total number of operations
spent in recomputing A~ -j during the entire algorithm is O(Nl-~s3v3L) . From the
Update Lemma below it lbllows that the number of updates to D,j in Step 2 between
successive resettings in Step 3 is O(N2'~). Hence the total number of updates to entries in

Dj in Step 2 during the entu'e algorithm is O(NI+~L). Since a modification of an entry
in Dj in Step 2 leads to at most five rank one changes in A~ -I, the total number of rank
one updates to A] I during the entire algorithm is O(NI+~L). Hence the total number
of operations to maintain A~ -I via rank one changes is O(N~es2u2L) over the entire
course of the algorithm. Choosing N '~ = (st,') ~ balances the total number of arithmetic
operations needed for recomputing and for performing rank one changes. Then since
N = O(se) , we get that the total number of arithmetic operations for maintaining Ai -t

is

O(N I -~ s3 v3 L) = O (N I + a s2 u2 L) = O (s3S u2S e L) .

A natural question to ask is "how much does the balancing save us over just per-
forming rank one corrections to A~-~". If we were to perform only rank one corrections
to A~ t (without any recomputations), the total number of operations to maintain A~ -1
would be O(s3Su2eJSL) whereas with recomputation and balancing the number of op-
erations reduces to O(s3SvZSeL). Thus balancing reduces the number of operations by

(e /u)~ which is substantial for dense networks.
Next, we prove the Lemma that bounds the total nmnber of updates to Da in Step

2 between successive resettings in Step 3. Tile naive bound on the number of updates
that would follow from the results in [4] would be O(N~ However, one can get a

better bound by formalizing the following intuitive argument:

I22 S. K a p m . : t~M. Vaidya/Mathemat ica l Programn ing 73 (1996) 111-127

Only those coordinates of w that change significantly can lead to rank one corrections;

if the relative change in wi accumulated over N a iterations is small then (Da)ii cannot

be updated in Step 2 during those N a iterations,

Update Lemma. Between successive resettings of DA in Step 3, the total number of
1 mod(fications to elements of Da in Step 2 is" O (N 2a) (t'6 < ~.

Proof. Let ni be the number of times (D_l)ii is modified in Step 2 between suc-

cessive resettings in Step 3. For convenience let the iteration numbers between the

successive resettings of D_a under consideration range from 0 to IN61 - 1. Let d~ =
((l / N) ~ i v, (w ~ / w ~ - ')) -1 (w~/w~- ') , h~ = ln(d~), and jk be the set of those indices

i such that It~J-11) 1/16[Na]. For 1 ~< i ~< N, let rri = {k: 0 <. k <~ [Na~ - I , i C jk},
and 0~ = {k: 0 ~< k <~ IN '~] - 1, i ~ jk}. Thus it" d} is very close to 1 then iteration

number k is in the set 0~, whereas if d} differs from 1 by at least 1/16FN~l then iteration

number k is in rri.
Since (Dj)ii is modified whenever the product of successive d~'s exceeds v ~ or falls

below l/v/2~, we have that for 1 ~< i ~< N,

[Nel -I
<Inv'<. l/ql.

k---O

As ~kce, 1h/~l ~< �89 from (i) we get that

k ~ r ,

I11 [6, Section 6.3] it is shown that for all k,

N

~--~(d~ - I) 2 ~< `89, for some constant /3 < 1,
i=1

and that

f~r f i2

2(1 ,8)
i= I

For each

and that

IEJ ~:

Thus (from (iv) and (v))

N

i ~ j ~ i=~ iE.l "~

(i)

(ii)

(iii)

(iv)

i ~ jk, ld ~ _ 11/> 1/16[-Nal, and so from (iii) we get that IJkl ~ (16INa l) 2

for all k,

(v)

`82
- - + 16[Nal,8.
2(~ - /3)

S, Kapoo*; P.M. Vaid.va/Mathematical Programming 73 (1996) 111-127 123

So from (ii) we get that

N N IN ~] --]

Z",-<sE E IhI I =8 �9

i=1 i=1 k@ni ,(=0 iEJ k

Thus V"'v L,i:I ni = O(N26/~). []

At this point we note that the above analysis depends on the algorithm taking small
steps.

5. Finding an exact opt imum from an approximate optimum

In this section we shall show how to obtain an optimal solution to problem MF
from an approximate optimum �9 in O(s3u 2) arithmetic operations, each operation being
performed to a precision of O(L) bits. Let us assume that we have a feasible point

such that pr~;, ~< 2 k,L, where kl is a suitably large constant. Let C1 r denote the/th row
A" S of C. Note that the objective function p r w = ~1=~ yl = ~l=~ (cl - C T x) . Also, note that

for any feasible point z = 1. Hence 2 satisfies the conditions

s

Z (c / - C2"2) ~< 2 -k'L,
/=1

A P 2 = O,

C2 < c,

2 > 0 .

Let H be the polytope given by

H = x: (ct Ci fx) <<. 2 -k~c, A P x = O , Cx <. c, x) O .
/=1

Let C(x) be a submatrix of C such that C T is a row of C(x) if ICTx - cll <~ 2 -k'L.
Let c(x) be the subvector of c con'esponding to C (x) . Let I (x) be a submatrix of the
identity matrix I such that the jth row of I is a row of l (x) i f [xj[<~ 2 -k'L. Let

[] " and I B]

A P ' I (x)

124 S. K~q~oop: P.M. VLlidya/Mathematical Pmgmmmi12g 73 (1996) 111-127

Computing an optimal vertex

To obtain an optimal vertex from an approximate optimum .~ we follow the procedure

in [9, pp. 173-174]. Suppose that x ' ~ [I, and that there exists a row r v of [c/] such

that r T is linearly independent of the rows of M (x ') . Since r v does not lie in the row

space of M (x ') , the following system of lineal equations has a solution:

M (x ') x = O,

rTx = I.

The orthogonal projection d of r onto the subspace {x: M(xZ)x = 0} is a solution to the

above system up to a scale factor. We can find a suitable scalar A such that x ~ + Ad is in

the polytope /7 and the rank of M (x ' + Ad) is strictly greater than the rank of M(xZ).

(We essentially move in the direction d till we hit a bounding plane of the polytope

l l .) We can thus create a sequence of points .;: = x ~ I x"' (m <~ se) such that

each x i is in the polytope 11, the rank of M(x i+l) is strictly greater than the rank of

M(xi) , and the row space of M (x i) is contained in the row space of M(x i+l) . (The

rank of M(x ' ") equals the dimension of x i.e., hi .) An optimal vertex x* is obtained as

the solution to the following system of linear equations [9, pp. 173-174].

- c i) = 0 ,
I=1

A Px* = O,

C (x'") x* : c (x ' ") ,

l (x'~')x * = O.

Let x i+l = x i + di/V, where d i is the non-zero projection of some row of [c] onto the

subspace {x: M (x i) x = 0} and A. i is a scalar. We check if a row of [c] is linearly /

independent of the rows of M(x i) by computing its orthogonal projection onto the

subspace {x: M(xi)x = 0}; if the projection is non-zero then it serves as the direction

di. Once we know that a row of [c 1] is linearly dependent on the rows of M (x i) , we

do not need to compute its projection again, since the row space of M(x i+l) includes

the row space of M(xi) . Thus there are O (s e) projection computations. We shall show

below that the number of operations to compute all the projections is O(s3v2e). Once

d i is available. /V may be obtained in O (s e) operations, since computing the product
of [c I] with d ~ takes O (s e) operations. This leads to a total of O(s3u2e) arithmetic

operations for generating the sequence x ~ = .~, x l , . . . , x m and computing x* from x m.

Projection computation

To efficiently compute the projections, we maintain a matrix

B

S. Kapo(n; P.M. Vaidya/Mathematical Progranuning 73 (1996) 111-127 125

such that the rows of this matrix form a basis for the row space of M(x i) (at the start

of tile (i + l)st step). Here C I and 11 are submatrices of C and 1 respectively. Let j ,

be the index set defined as j E j/ if the j th colum of I ' contains a 1. Let B (C) be the
matrix obtained from B (C ~) by dropping every column j such that j E j , . (~ and C

have nl - IJ'l columns.) Let 2 (?) be the nl - I J 1 [dimensional vector obtained from
x (r) by dropping each coordinate xj (r i) such that j E j/. The problem of projecting

r onto the subspace {x: M(xi)x = 0} is equivalent to the problem of projecting ~ onto

the subspace { 2 : B 2 = 0, C-2- = 0}.

Let G = ~ - T _ " f f c T (~ - T) _ I ~ T . We shall show that once G - l is available, the

required projection of ? may be obtained in O(s2v 2) operations. We shall also show

that maintaining G - I requires a total of O(s3c'2e) arithmetic operations. Since there

are O(se) projection computations, this gives a total of O(s3v2e) operations for all

projection computations.

First. we show that once G - I is available, computing the projection o f ? takes O(s2v 2)

operations. The required projection of ? is given by

T

?__ [~-T ~-T] ~-T ~-T F }="

Since each of B, C contains O(se) non-zeros, it suffices to show that once G - t is

available, solving the system of linear equations

[~-~T -ffcT] (u ,) =(g,) (i)

~ T ~V It2 g2

takes O(s2t '2) operations. Premultiplying both sides of (i) by

we get

U g r UC T "2 = 0

(ii)

Since ~ - T is diagonal and since each of B, C, has O(se) non-zeros, from (ii) it follows

that once G - I = (~ T _ ~ - T (~ - T) _ I ~ T) _ I is available, the solution to (i) above

can be obtained in O(s2v 2) operations.

Next, we count the number of operations for maintaining G - I . Note that ~--~-T is a

diagonal matrix. Adding an extra row to I t corresponds to setting another coordinate of

x to zero; this adds an index to J ' and leads to a column being dropped from B and

C. Adding a row to C / corresponds to adding a row to C. Thus if a row is added to

1 f or C I then at most a single entry is affected in C-C T,. and at most a single column is

126 S. Kapoo*: t~M. Vai~h,a/Mathematical Programming 73 (1996) I 11-127

affected in B as well as BC-q. Consequently, adding a row to 1 ~ or C ' leads to at most a

rank three change in G = ~-~-T- ~-T(ucT)_I~--~-T and in G - t , and this change can be

computed in O(s2t '2) operations using the Morrison-Woodbury rank one update tormula

[3,10]. Since at most se rows may be added to 1' and C ~ during the computation of

x ~ x I x"', the number of rank one changes to G is O(se). Hence the total number
of operations for maintaining G- i is O(s-~z'ee).

Finally, we briefly discuss the precision requirement. The subspace {_r: M (x i) . r = 0}
has a basis such that each vector in the basis has rational coordinates with a connnon

denominator of magnitude at most 2 L, Thus if a row r of [c] has a non-zero projection

into this subspace then the 2-norm of this projection is at least 2 -4L. Hence it suffices

to compute the projection of r to an accuracy of say kl L bits, and from the computed

approximate projection we may correctly determine whether r is or is not linearly

dependent on the rows of M (x i) . To guarantee such a bound on the error in the

projection, it sul~]ces to perform arithmetic ope,'ations to a precision of kg_L bits, and
maintain G - t to an accuracy of keL bits, for a suitably large constant k2 > kl. The

growth of the error in G - I during rank one updates is controlled as described in [11].

The point .v"' thus computed could be slightly infeasible, however, the point x* will still

be an optimal vertex [9, pp. 173-174].

6. Concluding remarks

We have shown how to speed up Karmarkar's algorithm for the case of multicommod-

ity flows. This gives an algorithm for the multicommodity flow problem which requires
O(s;'sc,2SeL) arithmetic operations, each operation being performed to a precision of

O(L) bits. We conch, de with the following remarks.

(1) The proof of tile claim that O(L) bits of precision is adequate for arithmetic
operations is a detailed but straightforward exercise and is left to the reader. To obtain

this bound on the precision one first proves a bound of 2 ~ on the norms and the

condition numbers of all the intermediate inatrices arising in the computation, and one

then applies standard theorems i n [3,10]. The growth of the error i n A ~ I during ran k one
updates is controlled as described in [11]. For similar but detailed arguments concerning

precision of arithmetic operations required for linear programming and convex quadratic

programming the reader may refer to [5,1 I].

(2) The techniques in this paper can also be applied to speed up the linear program-
ming algorithm in [11] for the case of multicommodity flows. This gives a slightly taster
algorithm for the multiconmlodity flow problem which requires O(s3L,2Se~ + s3u2e)

arithmetic operations. The application of the two ideas discussed in Section 2 to the
algorithm in [11] proceeds in a manner identical to the one in this paper.

(3) The techniques in this paper can also be applied to speed up linear programs

whose structure is shnilar to that of the multicolnmodity flow problem. Speed up is
obtained when the constraint matrix B can be expressed as (~;) where B, has nmch
fewer rows compared to B2, and B2 has some special structure. Examples of such

S. Kapoot; I~M. Vaidya/Mathematical Programming 73 (1996) 111-127 127

p r o b l e m s are g iven in [1,2]. In te res t ing ly enough , the m u l t i c o m m o d i t y flow p rob l em

with costs on the flows in each edge can be so lved in the same t ime complex i ty as that

ob ta ined in this pape r for the p la in m u l t i c o m m o d i t y flow p r o b l e m wi thou t edge costs.

References

[1] J. Birgc and L. Qi, "Computing block-angular Karmarkar projections with applications to stochastic
programming," Technical Report, Department of Industrial and Operations Engineering, University of
Michigan (Ann Arbor, MI, 1986).

]2] V. Chvatal, Linear Programming (Freeman, New York, 1983).
[3 J G.H. Go]nb and C.E Van Loan, Matrix Conqmtations (The Johns Hopkins University Press, Baltimore,

MA, 1983).
14] T.C. Hu, Integer Programming and Netw~rk Flows (Addison-Wesley, Reading, MA, 1969).
] 5 I S. Kapoor and P.M. Vaidya, "'Fast algorithms for convex quadratic programming and multicommodity

flows." Proceedings 18th Anmtal ACM Symposium Theory r Computing (1986), pp. 147-159.
]6] N. Karmarkar, "A new polynomial-time algorithm for linear programming," Combinatorica 4(4) (1984)

373-395.
17] L.G. Khachian, "Polynomial algorithms in linear programming," USSR Computational Mathematics and

Mathematical Physics 20 (1979) 191 - 194.
J8] M.K. Kozlov, S.E Tarasov and L.G Khachian, "Polynomial solvability of convex quadratic

progranm~ing," Doklady Akademii Nauk SSSR 5 (1979) 1051-1053.
J91 C.H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Complerity (Prentice-

Hall, Englewood Cliffs, NJ, 1982).
10] G.W. Stewart, h~troduction to Matrix Computations (Academic Press, New York, 1973).
I I] P.M. Vaidya, "An algorithm for linear programming which requires O(((m + n) n 2 + (m + tl) l.sn) L)

arithmetic operations," in: Proceedh~gs 19th Annual ACM Synq~osium Theot 3' r Computing (1987) pp.
29-38. I Extended version in: Mathematical Programming 47 (1990) 175-201.]

12l J.H. Wilkinson, The Algebraic Eigenvalue Problem (Oxford University Press, Oxford, 1965).
131 G. Zoutendijk, Mathematical Programming Methods (North-Holland, New York, 1976).

