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Abstract 

We show how to speed up Karmarkar's linear programming algorithm for the case of multicom- 
modity flows. The special structure of the constraint matrix is exploited to obtain an algorithm 
tbr the multicommodity flow problem which requires O(s3SvZ5eL) arithmetic operations, each 
operation being pertbrmed to a precision of O(L) bits. Here v is the number of vertices and e is 
the number of edges in the given network, s is the number of commodities, and L is bounded by 
the number of bits in the input. We obtain a speed up of the order of (e~ ~ + (eZS/J-Ss "-) 
over Karmarkar's modified algorithm which is substantial for dense networks. The techniques in 
the paper can also be used to speed up any interior point algorithm for any linear programming 
problem whose constraint matrix is structurally similar to the one in the multicommodity flow 
problem. 
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1. Introduct ion 

In this paper we study the problem of finding a multicommodity flow in a directed 

network (V,E) [4]. The network has a set of sources S and a set of sinks T and it is 

required that source Si send f i  units of commodity i to sink ~ through the network. 

(Note that S _C V, T C_ V.) Moreover, for the itb edge there is a capacity ci which upper 

bounds the total of all the commodities that may pass through that edge. For each of 

the sets V, E, S and T, we shall use the CO~Tesponding lower case letter to denote the 

size of the set. (The symbol e will be used to denote the number of edges as well as 

the vector of all l 's ;  the intended usage will be clear from the context.) 
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For each source-sink pair (T/, &) we add an extra edge directed frona Ti to S,., with 

an upper bound of  f i  on the flow of  commodity i through this edge. The goal is then 

to lind a circulation such that the flow of  commodity i in edge (Ti, Si) equals the 

capacity j).. No augmenting path algorithm is known lbr this problem when the number 

of  commodit ies  exceeds 1. The mult icommodity flow problem may be formulated as the 

following linear program: 

MF: min PTw = Yi, 
i= 1 

s.t. APx = 0 (flow conservation),  

Cx + ly - zc = 0 (capacity constraints),  

~ ~ . z t  Yi q- Z = ci + 1, 
i=1 i=1 i=1 

x ~ > 0 ,  y ~ > 0 ,  z >~0, 

where: 

( 1 ) .v E R"' is the vector of flow variables. For each edge incident to a vertex other 

than a source or a sink (i.e., for each edge incident to a vertex in V -  ( T U  S) )  there 

are s variables, each variable corresponding to one of the s commodities;  for an edge 

incident to 5", or Ti there is exactly one variable and this variable corresponds to the 

flow of  commodity i in the edge. Moreover, the first s co-ordinates of  x correspond to 

tim flows in the edges (Ti, Si), i = 1 . . . . . .  ~. 

(2)  3' E R" is the vector of  slacks. 

(3)  z is an extra variable that takes on the value 1 for any feasible solution. 

(4)  w T = (xT ,yT ,  z )  and w E R ~v where N = h i  + e +  1. 

(5)  c ~ R" is the capacity vector upper bounding x. The capacity constraints Cx + 

ly - zc = 0 upper bound the total flow of all commodities that may pass through each 

edge. 

(6)  Let n2 be the total number of  edges incident to vertices in TU S, and n 3 = e - n 2 .  

[/~ C =  0 C, ' 

where C C _~"• I C R "2• is the identity matrix, CI C R ''~• and the ith row of  Cj 

has l ' s  in the posit ions s( i  - 1) + 1 through si, and O's in the remaining positions. 

(7)  A is a block diagonal matrix with s blocks. The ith block of A is the node-  

edge incidence matrix of  the directed graph induced by the vertex set consisting of  Si 

and the vertices reachable from Si. P is an appropriate permutation matrix. The flow 

conservation constraints APx = 0 state that for commodity i, 1 ~< i ~< s, the flow of  

commodity i into a vertex equals the flow of  commodity i out of  the vertex for every 

vertex. 

(8)  The objective function pTw is the sum of  the slacks in the edges (T, ,S/) ,  i = 

l , . . . , s .  
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(9) The normalization constraint 7)]'i '1' xi + ~i"=l Yi + z = Y~,i<=l ci + 1 is obtained by 
summing the capacity constraints and combining this with the requirement z = 1. 

Note that the above formulation of the multicommodity flow problem is not the 
standard one but rather one which is explicitly in Karmarkar's form [6]. Furthermore, 
if a required multicommodity flow does exist then the minimum value of pTw is zero, 
and an optimal solution to problem MF gives the required flow. 

Let L = log(detmax) + l o g ( ~ i c i )  + logN, where detmax is the largest absolute value 
of the determinant of any square submatrix of the constraint matrix in problem ME We 
give an algorithm for the nmlticommodity flow problem (i.e., for problem MF) which 
requires O(s3'Su2SeL) arithmetic operations, each operation performed to a precision of 

O(L) bits. The algorithm is an adaptation of Karmarkar's linear programming algorithm 
[6]. Note that solving the multicommodity flow problem directly using Karmarkar's 
modified algorithm (which incorporates rank one updates and exploits the sparsity of 
the constraint matrix while forming ADA T) takes O((s3'Su2el5+ slSe3S)L) arithmetic 
operations. Thus we obtain a speed up of the order of (e~176 + (e25/u2Ss2) over 

Karmarkar's modified algorithm which is substantial for dense networks. The techniques 
used in this paper to obtain a speed up for multicommodity flows can also be utilized to 
obtain speed ups for similarly structured linear programs, for example, those arising in 

problems with generalized upper bounding and block angular problems [ 1,2]. For block 

angular problems, ideas similar in spirit to some in this paper have been used in [ 1 ] to 
reduce the work for projection computation at each iteration, but without any specific 
analysis. 

In Section 2 we give a brief overview of the two key techniques that are used to 

speed up Karmarkar's linear programming algorithm for the case of multicommodity 
flows. In Sections 3 and 4 we give a description of these techniques. In Section 5 
we show how to exploit the underlying structure of the multicommodity flow problem 
to obtain a procedure for quickly finding an optimal solution once an approximate 
optimum is available. In Section 6 we give some concluding remarks. Finally, the 
techniques in Sections 3 and 4 can be also applied to the linear programming algorithm 
in [1l ]  (instead of Karmarkar's algorithm), and this gives a slightly faster algorithm 
for the multicommodity flow problem which requires O(s3uZSe~ + s3u2e) arithmetic 
operations. The details of this slightly faster algorithm will be left to the reader. 

We shall conclude this section with a short discussion on obtaining a starting point 
and measuring convergence. An initial strictly interior feasible point can be obtained 
by assigning a small positive flow of each commodity to each edge such that flow 
conservation constraints and capacity constraints are satisfied, and the total flow of all 
the commodities in an edge is strictly less than the capacity of the edge. As in [6] 
convergence is measured by means of the potential function ~iNl ln(pTw/wi).  We shall 
briefly describe how the initialization may be done so that the potential at the initial 
point is O(NL).  First, assign a flow value of l /2se of each commodity to each edge. 
This results in an incoming surplus at some nodes and an incoming deficit at some 
other nodes; the total surplus of a commodity i at all nodes (except source Si and sink 
Ti) is at most l /2s.  The surpluses and deficits of commodity i may be eliminated by 



II4 S. Kapoor, P.M. Vaidya/Mathematical Progrnmmi~ g 73 (1996) 111-127 

repeatedly finding: (i) a directed path fl'om source S/ to  a node with incoming deficit of  

commodity i, or (ii) a directed path from a node with incoming surplus of commodity 

i to sink Ti, or (iii) a directed path from a node with surplus of  commodity i to a node 
with deficit of  commodity i. By pushing flow along such a path the number of  nodes 
that have deficits/surpluses of  commodity i may be reduced by one. Once the surpluses 

and deficits of  all the commodities have been eliminated, the flow of each commodity 

i Moreover, since all capacities are assumed in each edge is at least 1/2se and at most f. 
to be integers, each slack y, is at least ~-.l It is then easily seen that the initial value of  

the potential ~,.N I ln(pTw/wi) is O(NL) .  It is also straightforward to implement this 

initialization procedure in O(sl,e) time. 

Note that if the minimum value of  pTw over the feasible region is zero then at each 

iteration the value of  the potential function is reduced by a fixed constant, whereas if 

during some iteration the potential cannot be reduced by a constant then the minimum 
value of pTw is guaranteed to be greater than zero and the given nmlticommodity flow 

problem is infeasible. For details the reader may refer to Section 3.1 in reference [6] .  

At this point we also note that a preliminary version of this paper appeared in [5].  

2. An overview 

Applying Karmarkm-'s algorithm [6] to problem MF reduces the global optimization 
problem to a sequence of  O ( N L )  local optimizations over ellipsoids. The algorithm for 

the solution of  problem MF is an iterative algorithm with O ( N L )  iterations, and the 

local optimization during each iteration consists of minimizing a linear function over an 

ellipsoid. Let 

W k = V k 

be the point at the beginning of the kth iteration, where (xk) 'r = (x~,x~, . . . ,  x k,~ ) and 
(vk) r  .~k k k . = t.'l ,Y2 . . . . .  y,,). Let ce be a constant less than ~. During the kth iteration w ~+~ 
is obtained from w k as follows. 

Step 1. Find a direction w J by solving the local optimization problem 

s 

rain pTDw = Z ( D y ) i i  Yi 
i=1 

s.t. APDxx = 0 (flow conservation), 

CD, x + Dyy - cz = 0 (capacity constraints), 

eTw = O, 

wSw <~ 1, 
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where e "r = (1 . . . . .  1) and D, Dx, and D.r are diagonal matrices defined by D = 

diag(Dx, D,., 1), D.,. = diag(x~, x~, . .  . ,  x,~,~ ), D,.. = diag(y~, y ~ .  . . . . .  yek). 
Step 2. Compute w' as w; := (1 /N)e  + (offN)w 't. 
Step 3. w ~+1 := (~-~.ici + 1)(Dw;/eTDw'). 

The speed up lbr multicommodity 1lows is obtained by the application of two key ideas 

(techniques). The first idea is to utilize the special nature of the capacity constraints to 
reduce the dimension of the problem that is solved at each iteration. This technique is 
similar to the one used in problems with upper (lower) bounds. A direct solution of the 
local optimization problem in Step 1 above involves inverting an (st., + e) x (st; + e) 
matrix. However, the special structure of the matrices CDx and D~. can be exploited 
to reduce the above local optimization problem to the problem of inverting a matrix 
Ai of  dimension sv. (Note that for a dense graph c, is much smaller than e.) Tiffs 
reduction is described in Section 3. Specifically, Ai = APD~D~IDxPTA T where Dll = 

1 +D.~CVD.~?2CD,.. It is shown in Section 3 that Al can be computed from D in O(s2e) 
arithmetic operations, and that once (A~) - I  is available, w J and w k+~ can be computed 
in O(s2v 2) operations. 

The second idea is to balance the work required to directly invert Ai and to update 
(A~)-1 via rank one changes over the entire course of  the algorithm. As in [6] we 

work with an approximation Da to D such that (Da)ii E [(D)i i /v~,  V~(D)ii]; this 
corresponds to replacing D by D.a in the expression Ibr Aj. In Section 3 we show that 
an update of  an entry in D j  leads to at most a rank five change in A I and thereby 
to at most a rank five change in (A�91 -1. This constant rank change in (A1) -1 can 

be computed in O(s?v 2) operations using the Sherman-Morrison-Woodbury formula 
[3,10] 

( G + U V  T) 1 =G-I  - G - I U ( I  + VTG-IU)-IVTG-L. 

Thus if m of the entries in D j  are updated during an iteration then suitably updating 
A~ -I requires O(min{ms2c 2, $3U3}) operations during the iteration. In other words, if 

m >> sv then during the iteration it is more efficient to compute A ~-I by directly inverting 
A I rather than performing m rank one changes. This discrepancy allows us to improve 
the time complexity by balancing of the number of  operations as follows. Let 6 be a 
parameter. 

(a) Whenever the iteration number k is a multiple of [N'~], we compute (Aj)  -1 
by directly inverting AI in O(s3v ~) operations. Since the recomputation is performed 
O ( N  I -'SL) times, the total number of  operations for recomputation is O ( N  1-6s3133L). 

(b)  Between successive recomputations of (A 1 ) -1 we maintain (AI)  - 1 by perform- 

ing rank one changes. By the Update Lemma in Section 4, there are at most O ( N  26) 
updates to the entries in D,~ between successive recomputations of (Ai)  -1. Conse- 
quently, there are at most O ( N  26) rank one changes to (Al)  - I  between successive 
recomputations. Since there are O ( N I - 6 L )  recomputations, the total number of  rank 
one changes to (AI)-1 during the entire algorithm is O(NI+6L), and this leads to a 
total of  O(Nl+6s2v2L) operations for updating ( A j ) - I  via rank one changes. 
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Choosing N a = (st ' )  ~ balances the operations in (a) and (b) above, and leads to a 

total of  

O( N I -S  s-~v3 L ) = O(  N l +a s2v2 L ) = O( s3 5 t~e S e L ) 

arithmetic operations for maintaining (AI)  - i ,  since N = O ( s e ) .  

The balancing techniques described here are quite general and are applicable whenever 

the constraint matrix may be expresed as (~le) where B, has much fewer rows than B2 

and B2 has a special structure. Moreover, since the idea is to trade-off reinversion versus 

rank one updates it can be applied in the context of any interior point algorithm for 

linear programming. 
We can account for the time complexity of  the multicommodity flow algorithm as 

follows. In O ( N L )  iterations we either obtain a point ~/,' such that p'I'~, ~< 2-OIL) or 

obtain a proof that the minimum value of the objective function in problem MF is strictly 

greater than zero which means that the given multicommodity flow problem is infeasible. 

Once ~i~ is available, an optimal solution to problem MF and a feasible multicommodity 

flow may be found in O(s3v2e)  operations as described in Section 5. The total number of  
operations for maintaining (At)  -1 for O(NL)  i~erations is O(s-~sv2SeL), and O ( s 2 t  ;2) 

operations are spent in computing w k-~l from w k once ( A i ) - I  is available. Thus the 

total number of  arithmetic operations performed by the multicommodity flow algorithm 
is O ( s 3 S v 2 S e L ) .  

3. Reducing cost of local optimizations 

In this section we shall show how the special structure of  the capacity constraints may 

be exploited to reduce the local optimization problem at each iteration to the problem of 
inverting a matrix A] of  dimension sv. Throughout this section I will denote the identity 

matrix of the appropriate dimension. (The dimension will be clear from the context.) 

During the kth iteration w 'k+l is obtained from w k as follows. 

Step I. Find a direction W d by solving the local optimization problem 

s 

rnin p ' rDw = Z ( D y ) i i  Yi 
i= I 

s.t. APD, .x  = 0 (flow conservation), 

CDxx  + D.~,y - cz = 0 (capacity constraints), 

e T w  = O, 

wTw ~< 1, 

"or  k k 1ok "or  k k k -- y~, ), where D = diag(D,. ,D,. ,  1), D, = dlae,(xl,x-7,. ), D~. d,a~(,,q,y . . . . . .  
e T (1 . . . . .  1), and e v T T = = (e~,e s , l ) .  
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I Step 2. Compute w ~ = ( 1 / N ) e  + ( c e / N ) w  a, where w E 11~ N and oL < g. 

Step 3. w ~'+l = (~-~i ci + 1)(Dw' /e rDw' ) .  

Eliminating the capacity constraints by substituting 3' D ~ . I ( - C D , . x  -r c , )  reduces 
the local optimization problem in Step 1 above to 

rain p~(  - C D x x  + cz ) 

s.t. B ( X )  = 0 ' z  

( x T ' z ) Q ( X )  ~< . ' z  

where 

- -  T - - ? "  " " B =  " , 
- c  D y - C D x  1 4- cYD~-2c ' b T d2 

bl = ex - DxCTD~,le~.,  d2 1 -~- eTDylc, e T T T pT . . = = (e x,e~,, 1), and = (p~,pT,pz) .  

Eliminating the slacks y transforms the sphere wTw ~ 1 into the ellipsoid 

( x T ' z ) Q ( X )  ~< I ' z  

and the dinaension of the constraint matrix is reduced from su + e to sv at the cost of 
slightly increasing the complexity of the quadratic constraint. (Q is expressible as the 
sum of a block diagonal matrix plus a rank two matrix.) Let 

By the theory of convex functions and Lagrange multipliers [13], the solution (~',;) to 
the reduced problem is given up to a scale factor A by 

A z j  = ( 1 - Q - I B T ( B Q - I B T )  I B ) Q - t  p~c  ' (i) 

and 3, ~l is given by 

d ) '~1 = D~. 1 ( - C D x x  J + z c ) .  (ii) 

Next we shall show how to efficiently obtain expressions for Q-1 and ( B Q - 1 B T )  -1 

which involve the addition, subtraction, and multiplication of a constant number of 
matrices. The direction vector w ~l may then ber obtained using the above equations. In 
the following computations we shall repeatedly use the Sherman-Morrison-Woodbury 
formula [3], 

( G + UV T) - i  = G - I  _ G-~ U( I + V'r G - I  U) -~ VT G -1 . 



118 S. Kapoor, P.M. Vaidya/Mathematical Pivgramming 73 (1996) / 11-12 7 

1. Q can be expressed as Q = DI + Ul V~, where DI is a block diagonal matrix with 
each block of dinaension at most s, and Ui V( r is a matrix of  rank 2. Specifically, 

D , = ( D , ,  O )  
0 dl " 

where DII = I + D,Cr  D~72CDx, dl = 1 + cT D~72c, and 

U ~ =  ( ( )  . . -  0 1 ) (-c'rD~72CD~. O )  
-cTD.~7-'CD, 0 ' VII= 0 . . .  0 " 1 " 

2. Let D,,. be the diagonal matrix given by D~,. = (1 + D~71CD~Ca'D.~TI) -]. Note that 

D~. is computable in O(se) operations. Then D~ I can be expressed as 

DII 1 = 1 - D.~CTD]ID~.D~-ICDx 

in O(se) operations. Note that D[II is a block diagonal matrix, with each block of 
size at most s, and explicitly computing all the entries in DTi I would require O(s2e) 
operations. However, we do not explicitly compute all the entries in D~ I. Each block 
in D~ t may be represented as an identity matrix minus an outer product of  vectors, 
namely as I/, - rr~r 'r where 1~ is the p. x /x identity, rr is a /x-dimensional vector 

and # ~< s. For each block we compute only the corresponding vector rr rather than 
explicitly computing the outer product rrrrT; the block is implicitly represented by the 
vector yr. Such a representation of DIll I has O(se) non-zero entries and is computable 
in O(se) operations. Since the only computation in which D~l I is involved consists of  
multiplication by some other matrix this representation is adequate. Next, computing 
dl = I + c'rD,.2c requires O(e )  operations, and thus D~ -I can be expressed as 

in O(se) operations. 
3. Q - I  can then be expressed 

Q-I = D I  I _ U2U3U~ = ( 
k 

1 D~.CID71 ~ ] - D~.D~, CDx 0 
' 0 " d ~  l ) 

a s  

I - DxC T D v I D~.D.~. l CDx 
0 

0 '] - U~ U~U]'. 
d ~  - t  / - . 

where U2 = D[IUj ,  U3 = (I + V]TD~-IUI) -], and U4 = D~iVI, in O(se) operations. 
This is because Ut and V] are computable in O(se) operations, and using the expression 
for D I  I in 2 above, U2, V~D[IUI, U3, and Ua are also computable in O(se) operations. 

The above expression for Q - l  contains O(se) non-zeros. 
4. We next note that 

BQ-]B  T = BD~]B T + (BU2U3)(BU4) T =  A2 + UsV5 T, 

where 

A2= ( A ,  0 ) A, =APD.,D~ID~.pTAT d3=b . [D~ib i+d~d~ ,  
0 d3 ' - ' 
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uT5 = bT , V; r= 0 . . .  OT1 , b T=((APD~DTI'bl)T,O). 
(BU2U3) T (BU4) 

We observe that once U2, U3, U4 are available, U5 and V5 can both be computed in 

O(se) operations since both B and the expression of D~ I in 2 above contain O(se) 
non-zero entries. Also, d3 is computable in O(se) operations. 

5. (BQ-IBT) -I can now be written as 

(BQ-I BT) -I = A21 - A2Ius(I  + V~r A~IU5)-IVT A2 I. 

We shall show four properties of Al. First, once A~ -I is available, the direction w a 
may be obtained in O(s2L, 2) extra operations. Second, Al can be computed from D in 

O(s2e) operations. Third, an update of an entry in D leads to at most a rank five change 

in AI and thereby to at most a rank five change in A~-t; this change in Al and A~ -I is 
computable in o(sev 2) operations. Four, if each entry in D is multiplied by a scalar 0 

then each entry in At gets multiplied by 02; so if D is changed by a scale factor then 

,41 also gets changed by a scale factor. (As mentioned in Section 2, to reduce the time 
complexity we work with a suitable approximation Da to D which is defined in Section 

4; this corresponds to replacing D by Dj  in all the expressions derived in this section 

and tile four properties of AI hold with D replaced by Da.) 

First, we show that once A~ -I is available, the direction w a can be obtained in O(set, 2) 

operations. As noted in 4 above, computing d3, Us, and V5 requires O(se) operations. So 
once A71 is available, A2 I, VTA~_IUs, and the expression in 5 above for (BQ-IBT) -j 
can be obtained in o(sev e) extra operations. Moreover, the expression in 3 above for 

Q- i  is also computable in O(se) operations. Then since both B and the expression for 

Q- t  in 3 above contain O(se) non-zeros, fi'om equations (i) and (ii) it follows that w ~l 

can be computed in O(sZv 2) additional operations. Thus once A~ -I is available, finding 
the direction w d takes O(s2v 2) arithmetic operations. 

Next, we show that computing AI from D requires O(s2e) operations. Note that D~ I 
T - 1 2 - 

c a n  be expressed as D~ l = I - DxC Dy D,.Dy ICDx in O(se) operations. Also, Ai = 

APDxD~JDxpTA T. Thus AI may be written as AI = Aj I -AI2  where All = APD2pTA T, 
and A:_ = APD~C'rD?.~D~,DT~CD2pVA v. We shall describe how to obtain each of a~1 
and Ai2 in O(s2e) operations. 

(a) APDx is a block diagonal matrix with s blocks, the ith block being a weighted 
node-edge incidence matrix corresponding to commodity i. The dot product of two rows 

in distinct blocks of APDx is zero. The dot product of two distinct rows in the same block 

of APD.~ is non-zero only if there is an edge between the two vertices corresponding 

to the two rows, and this dot product can be evaluated in 0 (1 )  operations. So we 

may conclude that All has O(se) non-zero entries, and can be computed in O(se) 
operations. 

(b) Each column of APD2CTD~IDw corresponds to an edge and is a weighted sum 

of the O(s) columns of A that correspond to the O(s) flow variables for the edge. Since 
each column of A has 0 ( 1 )  entries, each column of APD2CTD~71Dw has O(s) entries. 
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There ~ e  s rows in APD~CrDy-JD,,, con'esponding to a vertex in V; the dot product of  

two rows is non-zero only if there is an edge between the two vertices corresponding 

to the two rows 0," the rows correspond to the same vertex. The dot product of  two 

rows con'esponding to distinct vertices with an edge between them may be evaluated in 

O( I ) operations; the dot product of two rows corresponding to the same vertex may 

be evaluated in a number of  operations proportional to the degree of  the vertex. Thus 

we may conclude that AI2 has O(s2e)  non-zero entries and is computable in O(s2e)  

operations. 

Thus At can be computed from D in O(s2e) arithmetic operations. 

Third, we show that modifying an entry in D leads to at most a rank five change 

in AI and in A~ -I .  Now suppose that an entry in D is modified. This can lead to the 

update of  at most a single entry in D.2~, and hence to at most a rank one change in A~I 

since All = APD~PVA r. The modification of  an entry in D leads to the modification 

of  at most a single entry in D~., since D~. is diagonal and can be written as D~. = ( I  + 

D;-ICD~C~D[71 ) -~. Also, the modification of an entry in D can lead to the modification 

of  either an entry in D,2 or D[71 but not both. Thus an update of  an element of D leads to 
2 T -- 1 9 - I 2 T T at most a rank four change in AI2, since AI2 = APDxC D,. DAD,. CDxP A . Hence, 

At can change by a matrix of  rank at most five. In other words if A'  1 is the new matrix 

obtained by changing an entry in D then A' I is expressible as 

A', = ,4~ + UV r, 

where U and V each have at most five columns, and are both computable in O(s2e)  

operations�9 Furthermore, a rank five change in A, can lead to at most a rank five 

change in A~ -I and this change is computable i n  O ( s 2 u  2 )  arithmetic operations using 

the Sherman-Morr i son-Woodbury  formula [3,10]. 

Finally, suppose each element of  D is multiplied by 0. Then Dl j  remains unchanged 

since Dit = I + DxCTD~72CDL., and each entry in At is mult ipl ied by 02 since AI = 

APD.~D~IDxPTA T. Thus multiplying each entry in D by a scalar 0 is equivalent to 

mult iplying each entry in A~ by the scalar 0 e. 

4. Balancing the number of  arithmetic operations 

In this section we show how to balance the number of arithmetic operations required 

to directly invert Ai and to update A~ -~ via rank one changes over the entire course 

of  the algorithm. As mentioned in Section 2 we use an approximation Da instead 

of D in the local optimization at each iteration. D~ satisfies the condition that for 

1 <. i <<. N, (D.a)ii E [(D)i i / 'g2,  v/2(D)~i], where D = diag(w~,w~ . . . . .  w~v) and 

w = (w~, w~ . . . . .  w~) is the point at the beginning of the kth iteration. We note that 

even though D~ is used instead of D, the number of  iterations in the algorithm is still 
= 0 0 O(NL)  [6] .  Initially, D j  ( ~ j , w  2 . . . . .  w~  At the start of  the kth iteration D j  is 

modified as follows. Let 6 be a parameter. 
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Step 1. Da := ( ( l / N )  ~ i N = i ( w f / w f - I )  ) D j .  

Step 2. F o r / =  1,2 . . . . .  N, if (Dj ) i i  ~ [w~/'v/2, v'~w~] then (n,a)ii = wf. 
Step 3. If k is a multiple of ~X 's] then Dj  := diag(w k, w k . . . . .  w~). 
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In Step 1 Da is modified by a scale factor and as a result A1 and A71 are changed 

by a scale factor as described in Section 3. Modifying an element of D,j in Step 2 leads 
to at most a rank five change in A~ and in A~ -I as was shown in Section 3, and this 
change can be computed in O(s2t. ,2) operations. Da gets reset in Step 3 whenever the 

iteration number k is a multiple of [-Na], and A~ -I has to be recomputed whenever D~ 
is reset. The parameter 8 determines the trade-off between the number of operations 

for recomputing A1 and the number of operations for maintaining A~ -I via rank one 

updates. 
The total number of operations for maintaining A~ -I during the entire course of the 

algorithm is obtained as follows. Whenever Dj  is reset in Step 3, we recompute A~ -1 by 
directly inverting A I in O(s3t~ ,3) operations. Between successive resettings of D,a in Step 
3 (i.e., between successive recomputations of A~-l), A~ -l is maintained by performing 
rank one updates at the cost of O(s2v 2) operations per rank one update. Since the 
recomputation of A~ -~ is performed O(N~-~L)  times, the total number of operations 
spent in recomputing A~ -j during the entire algorithm is O(Nl-~s3v3L) .  From the 
Update Lemma below it lbllows that the number of updates to D,j in Step 2 between 
successive resettings in Step 3 is O(N2'~). Hence the total number of updates to entries in 

Dj  in Step 2 during the entu'e algorithm is O(NI+~L).  Since a modification of an entry 
in Dj  in Step 2 leads to at most five rank one changes in A~ -I, the total number of rank 
one updates to A]  I during the entire algorithm is O(NI+~L).  Hence the total number 
of operations to maintain A~ -I via rank one changes is O(N~es2u2L)  over the entire 
course of the algorithm. Choosing N '~ = (st,') ~ balances the total number of arithmetic 
operations needed for recomputing and for performing rank one changes. Then since 
N = O(se) ,  we get that the total number of arithmetic operations for maintaining Ai -t 

is 

O( N I -~ s3 v3 L ) = O ( N I + a s2 u2 L ) = O ( s3S u2S e L ) . 

A natural question to ask is "how much does the balancing save us over just per- 
forming rank one corrections to A~-~". If we were to perform only rank one corrections 
to A~ t (without any recomputations), the total number of operations to maintain A~ -1 
would be O(s3Su2eJSL) whereas with recomputation and balancing the number of op- 
erations reduces to O(s3SvZSeL).  Thus balancing reduces the number of operations by 

(e /u)~ which is substantial for dense networks. 
Next, we prove the Lemma that bounds the total nmnber of updates to Da in Step 

2 between successive resettings in Step 3. Tile naive bound on the number of updates 
that would follow from the results in [4] would be O(N~ However, one can get a 

better bound by formalizing the following intuitive argument: 
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Only those coordinates of  w that change significantly can lead to rank one corrections; 

if the relative change in wi accumulated over N a iterations is small then (Da)ii  cannot 

be updated in Step 2 during those N a iterations, 

Update  Lemma.  Between successive resettings of DA in Step 3, the total number of 
1 mod(fications to elements of Da in Step 2 is" O ( N  2a)  (t'6 < ~. 

Proof. Let ni be the number of times (D_l)ii is modified in Step 2 between suc- 

cessive resettings in Step 3. For convenience let the iteration numbers between the 

successive resettings of  D_a under consideration range from 0 to IN61 - 1. Let d~ = 
( ( l / N )  ~ i  v, ( w ~ / w ~ - ' ) )  -1 (w~/w~- ') ,  h~ = ln(d~), and jk be the set of  those indices 

i such that It~J-11 ) 1/16[Na].  For 1 ~< i ~< N, let rri = {k: 0 <. k <~ [Na~ - I ,  i C jk},  
and 0~ = {k: 0 ~< k <~ IN '~] - 1, i ~ jk}. Thus it" d} is very close to 1 then iteration 

number k is in the set 0~, whereas if d} differs from 1 by at least 1/16FN~l then iteration 

number k is in rri. 
Since (Dj)ii is modified whenever the product of successive d~'s exceeds v ~  or falls 

below l/v/2~, we have that for 1 ~< i ~< N, 

[Nel -I 
<Inv'<. l/ql. 

k---O 

As ~kce,  1h/~l ~< �89 from ( i )  we get that 

k ~ r ,  

I11 [6, Section 6.3] it is shown that for all k, 

N 

~--~(d~ - I )  2 ~< `89, for some constant /3 < 1, 
i=1 

and that 

f~r f i2  

2(1 ,8) 
i= I 

For each 

and that 

IEJ ~: 

Thus (from (iv) and (v ) )  

N 

i ~ j  ~ i=~ iE.l "~ 

(i) 

(ii) 

(iii) 

(iv) 

i ~ jk, ld ~ _ 11/> 1/16[-Nal, and so from (iii) we get that IJkl ~ (16INa l )  2 

for all k, 

(v) 

`82 
- -  + 16[Nal,8. 
2(~ - /3)  
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So from (ii) we get that 

N N IN ~] --] 

Z",-<sE E IhI I =8 �9 

i=1 i=1 k@ni ,(=0 iEJ k 

Thus V"'v L,i:I ni = O(N26/~). [] 

At this point we note that the above analysis depends on the algorithm taking small 
steps. 

5. Finding an exact opt imum from an approximate optimum 

In this section we shall show how to obtain an optimal solution to problem MF 
from an approximate optimum �9 in O(s3u 2) arithmetic operations, each operation being 
performed to a precision of O(L) bits. Let us assume that we have a feasible point 

such that pr~;, ~< 2 k,L, where kl is a suitably large constant. Let C1 r denote the/th row 
A" S of C. Note that the objective function p r w  = ~1=~ yl = ~l=~ (cl - C T x ) .  Also, note that 

for any feasible point z = 1. Hence 2 satisfies the conditions 

s 

Z ( c / -  C2"2) ~< 2 -k'L, 
/=1 

A P 2  = O, 

C2 < c, 

2 > 0 .  

Let H be the polytope given by 

H =  x: (ct Ci fx )  <<. 2 -k~c, A P x = O ,  Cx <. c, x ) O  . 
/=1 

Let C(x)  be a submatrix of C such that C T is a row of C(x)  if ICTx - cll <~ 2 -k'L. 
Let c(x)  be the subvector of c con'esponding to C ( x ) .  Let I ( x )  be a submatrix of the 
identity matrix I such that the jth row of I is a row of l ( x ) i f  [xj[ <~ 2 -k'L.  Let 

[ ] "  and I B ] 

A P  ' I ( x )  
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Computing an optimal vertex 

To obtain an optimal vertex from an approximate optimum .~ we follow the procedure 

in [9, pp. 173-174].  Suppose that x '  ~ [I, and that there exists a row r v of  [ c/] such 

that r T is linearly independent of  the rows of M ( x ' ) .  Since r v does not lie in the row 

space of M ( x ' ) ,  the following system of  lineal equations has a solution: 

M ( x ' ) x  = O, 

rTx  = I. 

The orthogonal projection d of  r onto the subspace {x: M(xZ)x  = 0} is a solution to the 

above system up to a scale factor. We can find a suitable scalar A such that x ~ + Ad is in 

the polytope /7 and the rank of M ( x '  + Ad) is strictly greater than the rank of M(xZ).  

(We essentially move in the direction d till we hit a bounding plane of  the polytope 

l l . )  We can thus create a sequence of  points .;: = x ~  I . . . . .  x"' (m <~ se) such that 

each x i is in the polytope 11, the rank of M(x i+l) is strictly greater than the rank of  

M(xi) ,  and the row space of M ( x  i) is contained in the row space of  M(x i+l ) .  (The 

rank of  M(x ' " )  equals the dimension of x i.e., hi .)  An optimal vertex x* is obtained as 

the solution to the following system of  linear equations [9, pp. 173-174].  

- c i  ) = 0 ,  
I=1 

A Px* = O, 

C (x'")  x* : c ( x ' " ) ,  

l ( x'~')x * = O. 

Let x i+l = x i + di/V, where d i is the non-zero projection of some row of [ c ] onto the 

subspace {x: M ( x i ) x  = 0} and A. i is a scalar. We check if a row of  [ c ]  is linearly / 

independent of the rows of  M(x i) by computing its orthogonal projection onto the 

subspace {x: M(xi)x  = 0};  if the projection is non-zero then it serves as the direction 

di. Once we know that a row of  [ c 1 ] is linearly dependent on the rows of  M ( x i ) ,  we 

do not need to compute its projection again, since the row space of  M(x i+l ) includes 

the row space of  M(xi) .  Thus there are O ( s e )  projection computations. We shall show 

below that the number of  operations to compute all the projections is O(s3v2e).  Once 

d i is available. /V may be obtained in O ( s e )  operations, since computing the product 
of  [ c  I ] with d ~ takes O ( s e )  operations. This leads to a total of  O(s3u2e) arithmetic 

operations for generating the sequence x ~ = .~, x l , . . . ,  x m and computing x* from x m. 

Projection computation 

To efficiently compute the projections, we maintain a matrix 

B 
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such that the rows of  this matrix form a basis for the row space of  M(x i) (at the start 

of  tile (i + l)st  step). Here C I and 11 are submatrices of  C and 1 respectively. Let j ,  

be the index set defined as j E j/  if the j th colum of  I '  contains a 1. Let B (C)  be the 
matrix obtained from B (C ~) by dropping every column j such that j E j , .  ( ~  and C 

have nl - IJ'l columns.) Let 2 (?) be the nl - I J 1 [  dimensional vector obtained from 
x (r)  by dropping each coordinate xj (r i) such that j E j/.  The problem of projecting 

r onto the subspace {x: M(xi)x = 0} is equivalent to the problem of projecting ~ onto 

the subspace { 2 : B 2  = 0, C-2- = 0}. 

Let G = ~ - T  _ " f f c T ( ~ - T ) _ I ~ T .  We shall show that once G - l  is available, the 

required projection of  ? may be obtained in O(s2v 2) operations. We shall also show 

that maintaining G - I  requires a total of O(s3c'2e) arithmetic operations. Since there 

are O(se) projection computations, this gives a total of O(s3v2e) operations for all 

projection computations. 

First. we show that once G - I  is available, computing the projection o f ?  takes O(s2v 2) 

operations. The required projection of  ? is given by 

T 

?__ [ ~-T ~-T ] ~-T ~-T  F }=" 

Since each of  B, C contains O(se) non-zeros, it suffices to show that once G - t  is 

available, solving the system of linear equations 

[~-~T -ffcT] ( u , )  =(g, ) (i) 

~ T  ~V  It2 g2 

takes O(s2t '2) operations. Premultiplying both sides of (i) by 

we get 

U g  r UC T "2 = 0 

(ii)  

Since ~ - T  is diagonal and since each of  B, C, has O(se) non-zeros, from (ii) it follows 

that once G - I  = ( ~ T  _ ~ - T ( ~ - T ) _ I ~ T ) _  I is available, the solution to (i) above 

can be obtained in O(s2v 2) operations. 

Next, we count the number of  operations for maintaining G - I .  Note that ~--~-T is a 

diagonal matrix. Adding an extra row to I t corresponds to setting another coordinate of  

x to zero; this adds an index to J '  and leads to a column being dropped from B and 

C. Adding a row to C / corresponds to adding a row to C. Thus if a row is added to 

1 f or C I then at most a single entry is affected in C-C T,. and at most a single column is 
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affected in B as well as BC-q. Consequently, adding a row to 1 ~ or C '  leads to at most a 

rank three change in G = ~-~-T- ~-T(ucT)_I~--~-T and in G - t  , and this change can be 

computed in O(s2t '2) operations using the Morrison-Woodbury rank one update tormula 

[3,10]. Since at most se rows may be added to 1' and C ~ during the computation of  

x ~ x I . . . . .  x"', the number of  rank one changes to G is O(se).  Hence the total number 
of operations for maintaining G- i  is O(s-~z'ee ). 

Finally, we briefly discuss the precision requirement. The subspace {_r: M ( x i ) . r  = 0} 
has a basis such that each vector in the basis has rational coordinates with a connnon 

denominator of  magnitude at most 2 L, Thus if a row r of  [ c ] has a non-zero projection 

into this subspace then the 2-norm of this projection is at least 2 -4L. Hence it suffices 

to compute the projection of  r to an accuracy of  say kl L bits, and from the computed 

approximate projection we may correctly determine whether r is or is not linearly 

dependent on the rows of  M ( x i ) .  To guarantee such a bound on the error in the 

projection, it sul~]ces to perform arithmetic ope,'ations to a precision of kg_L bits, and 
maintain G - t  to an accuracy of keL bits, for a suitably large constant k2 > kl. The 

growth of  the error in G - I  during rank one updates is controlled as described in [ 11]. 

The point .v"' thus computed could be slightly infeasible, however, the point x* will still 

be an optimal vertex [9, pp. 173-174]. 

6. Concluding remarks  

We have shown how to speed up Karmarkar's algorithm for the case of  multicommod- 

ity flows. This gives an algorithm for the multicommodity flow problem which requires 
O(s;'sc,2SeL) arithmetic operations, each operation being performed to a precision of  

O(L)  bits. We conch, de with the following remarks. 

(1) The proof of  tile claim that O(L)  bits of precision is adequate for arithmetic 
operations is a detailed but straightforward exercise and is left to the reader. To obtain 

this bound on the precision one first proves a bound of 2 ~ on the norms and the 

condition numbers of  all the intermediate inatrices arising in the computation, and one 

then applies standard theorems i n [ 3,10]. The growth of  the error i n A ~ I during ran k one 
updates is controlled as described in [ 11 ]. For similar but detailed arguments concerning 

precision of  arithmetic operations required for linear programming and convex quadratic 

programming the reader may refer to [5,1 I ]. 

(2) The techniques in this paper can also be applied to speed up the linear program- 
ming algorithm in [ 11 ] for the case of  multicommodity flows. This gives a slightly taster 
algorithm for the multiconmlodity flow problem which requires O(s3L,2Se~ + s3u2e) 

arithmetic operations. The application of  the two ideas discussed in Section 2 to the 
algorithm in [ 11 ] proceeds in a manner identical to the one in this paper. 

(3) The techniques in this paper can also be applied to speed up linear programs 

whose structure is shnilar to that of  the multicolnmodity flow problem. Speed up is 
obtained when the constraint matrix B can be expressed as (~;) where B, has nmch 
fewer rows compared to B2, and B2 has some special structure. Examples of such 
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p r o b l e m s  are g iven  in [ 1,2]. In te res t ing ly  enough ,  the  m u l t i c o m m o d i t y  flow p rob l em 

with  costs  on the flows in each edge  can be so lved  in the same t ime complex i ty  as that  

ob ta ined  in this  pape r  for  the  p la in  m u l t i c o m m o d i t y  flow p r o b l e m  wi thou t  edge  costs.  
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