
Algorithmica (1989) 4:569-583 Algorithmica
�9 1989 Springer-Verlag New York Inc.

Approximate Minimum Weight Matching on Points
in k-Dimensional Space ~

Pravin M. Vaidya 2

Abstract. We study the problem of finding a minimum weight complete matching in the complete
graph on a set V of n points in k-dimensional space. The points are the vertices of the graph and
the weight of an edge between any two points is the distance between the points under some Lq-metric.
We give an O((2cq)lSke-15k(a(n, n))~ n) 2"5) algorithm for finding an almost minimum
weight complete matching in such a graph, where cq =6k 1/q for the Lq-metric, ce is the inverse
Ackermann function, and e -< 1. The weight of the complete matching obtained by our algorithm is
guaranteed to be at most (1 + e) times the weight of a minimum weight complete matching.

Key Words. Geometric matching, Approximation algorithms.

1. Introduction. Given a complete weighted undirected graph on a set of n
vertices, a complete matching is a set of n/2 (n even) edges such that every vertex
has exactly one edge in the matching incident on it. The weight or cost of a set
of edges is the sum of the weights of the edges in the set and the weight of a
graph is the weight of the set of its edges. A minimum weight complete matching
(MWCM) is a complete matching that has the least weight among all the complete
matchings. The problem of finding a minimum weight complete matching is a
very-well-studied problem and an MWCM in a complete graph on n vertices
may be found in O(n 3) time [4], [5].

We study the problem of finding an MWCM in the complete graph on a set
V of n points in k-dimensional space. The points are the vertices of this graph
and the weight of an edge between any two points is the distance between the
points under some L o metric. Each point x is given as vector (Xl, x 2 , . . . , Xk).
The Lq distance between two points x = (xl , x 2 , . . . , Xk) and y = (Yl, Y 2 , . . . , Yk)
is given by (~ik=l IX i --Yilq) 1/q. (Note that the Lo~ distance between x and y is given
by max~[xi-y~[.) We assume that the dimension k and the metric Lq are fixed.
By a complete matching on V we mean a complete matching in the complete
graph on V.

A complete graph induced by a set V of n points in k-dimensional space is
entirely specified by n k-tuples of real numbers which give the locations of the
vertices. Thus the problem of finding an MWCM on such a set of points V differs
from the problem of finding an MWCM in a general complete graph in that the
input size is O(n) rather than ~"~(n2). The input is sparse because the edge weights

1 This research was supported by a fellowship from the Shell Foundation.
2 2D-153, AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, USA.

Received September 1, 1986; revised January 5, 1988. Communicated by C. K. Wong.

570 P.M. Vaidya

are defined implicitly by the underlying geometry. It is interesting to investigate
if the geometric nature of the graph can be exploited to obtain fast algorithms
that find complete matchings whose weight is minimum or close to minimum.
Several algorithms that are based on the underlying geometry may be found
in [1], [8], and [11]. However, all the algorithms have the drawback that in
the worst case the weight of the complete matching obtained may be far
from minimum. We present an algorithm that finds an almost minimum weight
complete matching on a set V of n points in k-dimensional space in
O((2Cq)l"Ske-l'Sk(ct(n, n))~ n) 2"5) time, where cq = 6k 1/q for the Lq-metric,
a is the inverse Ackermann function [12], and e < 1. The weight of the complete
matching obtained is guaranteed to be at most (l + e) times the weight of an
MWCM on V. We also describe a heuristic that runs in O(n(log n) 3) time, and
finds a complete matching on V whose weight is at most 3 log3(1.Sn) times the
weight of an MWCM on V.

We let Mopt(V) denote an MWCM on the finite set of points V, and let Mopt(G)
denote an MWCM in the graph G. We let w(e) denote the weight of an edge e.
We also let w(E) denote the weight of the set of edges E, and let w(G) denote
the weight of graph G. An odd degree subgraph of G is a subgraph of G such
that each vertex in G has odd degree in the subgraph. A minimum weight odd
degree subgraph of G is an odd degree subgraph of G that has the least weight
among all the odd degree subgraphs of G. We let ~bopt(G) denote a minimum
weight odd degree subgraph of G. As the metric Lq is fixed we use distance for
Lq distance and let d(p, p') denote the distance between two points p and p'.
For a set of points V, we let dmi~(V) and dm~x(V) respectively denote the minimum
and the maximum distance between a pair of points in V. For sets of points V~
and V2, we let dmin(V1, V2) and dmax(V1, V2) respectively denote the minimum
and the maximum distance between a point in V~ and a point in I,'2. A box is
defined to be the product -/1 x J2 x . . . x Jk of k intervals, each interval being
closed on the left and open on the right. Alternately, a box is the set of those
points x = (xl, x2 , . . . , Xk) such that x~ is in interval Ji (J~ being closed on the
left and open on the right), i = 1, 2 , k. A box is cubical iff all the k intervals
defining it have the same length, and the size of a cubical box is the length of
each of the k intervals defining it.

2. An Overview. Let V be the given set of n points in k-dimensional space. Let
us assume that dmax(V)/dmin(V) is bounded by n 8. In Section 5 we describe how
to reduce the given problem, in O(n log n) time, to a problem where the ratio
d,~a~(V)/dmin(V) is bounded by n 8. The algorithm for finding an almost minimum
weight complete matching on such a set of points V proceeds as follows. Let e
be a parameter less than or equal to 1, and let Cq be a constant such that cq = 6k 1/q
for the Lq-metric, q = 1, 2 , . . . , oo.

1. From the set of points V extract a sparse graph G = (V, E) such that IE[=
O((2cq)ke-kn log n) and w(~bopt(G)) - (1 + e)w(Mopt(V)).

2. Find an odd degree subgraph F of G such that w(F)<_ (1+ 1/ n)W($opt(G)).

Approximate Minimum Weight Matching on Points in k-Dimensional Space 571

3. Convert F into a complete matching M on V such that w(M) <- w(F). Then
w(M) <- (1 + 1/n)(1 + e)w(Mopt(V)).

In Section 4 we describe how to extract G from V in O((2Cq)ke-kn log n) time.
In Section 6 we describe how to find an odd degree subgraph F of G, such

that w(F)-< (1 + 1/n)w(~opt(G)), in O((2Cq)l"Ske-lSk(o~(n, n))~ n) 25)
time. (a is the inverse Ackermann function [12].)

In Section 3 we show how to convert the odd degree subgraph F of G into a
complete matching M on V, such that w(M) <_ w(F), in O(I V I + IEI) time. (The
matching M is not necessarily a subgraph of F.)

Thus the entire process of finding a complete matching M on V such that

w(M) <- (1 + 1/n)(1 + e)w(Mopt(V))

takes O((2Cq)l"5%-lSk(a(n, n))~ n) 25) time.

We note that the hypergreedy heuristic in [9] may be run on the graph G to
obtain an odd degree subgraph F of G such that w(F)-< 2 log3(1.5n)w(~bopt(G)).
It is shown in [9] that given a graph 0 = (V,/~), the hypergreedy heuristic runs
in o([~l(logl~[) 2) time. Thus if in the above approximation algorithm we fix e
to be �89 and utilize the hypergreedy heuristic to find an odd degree subgraph F
of G in step 2, we get a procedure that runs in O(n(log n) 3) time, and finds a
complete matching M on V such that w(M) <_ 3 log3(1.5n)w(Mopt(V)).

3. Converting an Odd Degree Subgraph of G into a Complete Matching on V. The
odd degree subgraph F of G -- (V, E) is converted into a complete matching M
on V as follows. We first find the connected components F1, F 2 , . . . , Ft of F.
Each connected component must contain an even number of points (vertices)
which may be seen as follows. The sum of the degrees of all the vertices in a
connected component is an even number whereas the degree of each vertex is
an odd number; so the number of vertices in each component must be even. Let
T1, T 2 , . . . , T~ be spanning trees on the l connected components of F. Utilizing
T~ we find a traveling salesman tour C~ of the points in F~ such that w (C~) --- 2 w (T~).
The tour C~ induces two complete matchings of the points in F~ and out of these
two matchings we let M~ be the one of smaller weight (length). Then M -- Uli=l M~
is a complete matching on V and

w (M) = w <- 2 w(Ti) <- Z w(ri)<-w(F).
i ~ 1 i = l

The entire procedure for obtaining a matching M from an odd degree graph F
may be implemented in time proportional to the number of edges in F.

4. Extracting Sparse Graph G =(V, E). We are given a set V of n points in
k-dimensional space satisfying the condition (dn~ax(V)/dmin(V)) ~ 0 8. Let e be a
parameter less than or equal to 1, and let cq be a constant defined as Cq = 6k 1/q

572 P.M. Vaidya

for the Lq-metric. We describe how to extract a sparse graph G = (V, E) from V
such that IE[= O((2cq)%-"n log n) and w(tPopt(G)) -< (1 + e)w(Mopt(V)) .

Let go be a smallest cube enclosing all the n points in V, and let Lo be the
length of a side of go. Let g; be a grid that partitions go into 2 ki identical cubical
boxes, and let 6 = [(log2(2knS))]. Let B~ denote the set of those boxes (cubes)

B in gg which contain a point in V, and let B = U~=o ~. We note that each box in
B8 contains exactly one point in V. Let Li = c o]-e-~]2-~Lo. Let r(b) denote the
representative point in a box b.

Let Z denote the set of all the edges in the complete graph on V, and let

Zi = {(Pl, P2): Pl �9 bl n V, P2 �9 b2 n V, bl �9 Bi, b2 �9 Bi, dmi~(bl, b2) >- Li/3}.

The following two lemmas follow directly from the definitions.

LEMMA 1. For 1 <- i <- 6, i f bl �9 B~, b2 �9 B~, and dmin(bl, b2) ~ LJ3 , then dmax(bl) =
dmax(b2) ~ (e / 2) d m i n (b l , b2).

LEMMA 2. Z o c_ Z1 C- . . " c__ Z i c__ " " " c_ Z s c_ Z

LEMMA3. For 1<--i<--6, i f (p ~ , p 2) � 9 1), thenpl ,P2, are locatedinboxes
bl, b2, which satisfy bl �9 Bi, b2 �9 Bi, and L J 3 <- dmin(bl, b2) ~ L~.

PROOF. Suppose Pl,P2 are located in boxes bl, b2 in B~ respectively. Since
(Pl, P2) �9 Z~, dmin(bl, b2) >- L~/3. Let b'l �9 B~ 1, b~ �9 B~-I, and let bl c_ b], b2 c_ b'2.
Since (Pl, P2) �9 (Zi - Zi-1), we have dmin(b~, b'2) <- Li-1/3. Then

drain(b1, b2) --- dmin(b~, b~) + dmax(b ~) / 2 + dmax(b ~) / 2

<-- Li-1/3 + kl/q2-(i-1)Lo

L i . []

We now give an algorithm to extract the sparse graph G = (V, E) from the set
of points V.

ALGORITHM Sparse-Graph

1. For each box b �9 B, pick a representative point r(b) from among the points
in b n V.

2. Let E =[,--J~=l Ei where

Ei = {(r(b), p): b �9 B,, b' �9 B,, p �9 b' n V, p # r(b), dmln(b , b') -< Li}.

end Sparse-Graph

Approximate Minimum Weight Matching on Points in k-Dimensional Space 573

We first bound the number of edges in E. Assume p c b n V and b 6 B~. The
edges in E~ that are incident to p connect p to representative points in boxes
b' ~ Bi such that drain(b, b')-< Li, and there are O((2Cq)ke-k) such boxes in B~.
Thus each point has O((2Cq)ke -k) edges in E~ incident on it and so IEil =
O((2Cq)ke-kn). As ~ = O(log n) this gives

6
IE[~ E IE, I = O((2Cq)%-kn log n) = O(e-kn log n)

i=1
for fixed k.

We now prove that W(~opt(G)) < - (1+ e)W(Mopt(V)). We define a function f
from Z ~ 2 e such that for each edge (Pl, P2) ~ Z,f((p~, P2)) forms a path between
p~ and P2,f((Pl, P2)) ~ E, and w(f((p~, P2))) <- (1 + e)d(pl, P2).

(i) Let plCb~, p2cb2, b~cBi, b26Bi, and (pl ,p2)c(Zi-Zi-1) , i <- & Then we
define f ((P l , P2)) to be the set that has smaller weight among the two sets
of edges {(Pl, r (b0) , (r (b0 , P2)} and {(P2, r(b2)), (r(b2), P0}. From Lemma
3, f ((P l , P2)) ~ E~, and from Lemma 1, w(f((pl , P2))) <- (1 + e)d(p~, P2).

(ii) If (Pl, P2) 6 (Z - Z~) then (p~, P2) c E, and we let f((p~, P2)) = {(Pl, P2)}-

Consider the graph (V, Ue~Mop,(v)f(e)). This graph is a subgraph of G = (V, E),
and its weight is at most (1 + e)w(Mopt(V)). Each connected component of this
graph must contain an even number of vertices which is seen as follows. Assume
that there is a connected component C of (V, (_J~Mo,~(v)f(e)) which contains
an odd number of vertices. Since Mopt(V) is a complete matching on V there
must be a vertex p in C which is matched to a vertex p' not in C by an edge in
Mopt(V). Then f((p, p')) forms a path between p c C and p '~ C and this contra-
dicts the assumption that C is a connected component of (V, l...J~Mo,~(v)f(e)).
Hence from Lemma 4 below we may conclude that each connected component
of (V, U~Mop,(v)f(e)) contains a subgraph such that every vertex in the com-
ponent has odd degree in the subgraph. Thus the graph (V, Ue~Mo~,(v)f(e))
contains a subgraph where every point in V has odd degree. This gives

W(IJJopt (G)) ~ w (e~MopU(v)f(e))-<(l+e)w(Mopt(V)).

The following lemma is proved in [9].

LEMMA 4. Let T be a spanning tree on a set of vertices S and let IS] be even.
Then there is a subgraph T' of T such that every vertex in S has odd degree in T'.

PROOF. A proof of Lemma 4 is given in [9] but we include it for completeness.
Pair up the vertices in S in some way. (Each vertex is paired up with exactly one
other vertex.) There is a unique path in T connecting two paired-up vertices. Let
H be the set of paths between paired-up vertices, and let T' be the set of those
edges in T which are contained in an odd number of paths in 17. We show that

574 P.M. Vaidya

an odd number of edges in T' are incident to any vertex in $. For an edge e in
T, let num(e) be the number of paths in 17 which contain e. Let v ~ S and let
num(v)---~)~eincidenttov num(e). The path in II which terminates at v contributes
one to num(v), and any other path in FI contributes either zero or two to num(v).
Hence, num(v) is odd, and there must be an edge e incident to v such that
num(e) is odd. Furthermore, the total number of edges e ~ T such that e is
incident to v and num(e) is odd must also be an odd number. Thus each vertex
v in S has odd degree in T'. []

In addition, ~/opt(G) has the interesting property that each point in V has
degree at most c log2 n in ~bopt(G), for some constant c dependent on k. Using
this property of G, it may be possible to find $opt(G) or an odd degree subgraph
of G with weight close to w(~bopt(G)) in a manner more efficient than the one
described in Section 6. Lemma 5 bounds the degree of each point in $opt(G).

LEMMA 5. I f e <--- 1 then each point p in V has degree at most c log2 n in ~bopt(G)
where c = 8 k+l.

PROOF. Given in the Appendix. []

Next, we describe how to implement the algorithm for extracting G from V.
To obtain a fast implementat ion of Algorithm Sparse-Graph we construct a data
structure which is best described as a tree-of-boxes. The tree-of-boxes is quite
similar to the cell-tree [2], [3] and the quadtree [10].

1. The root of the tree is the box go, and the children of each box b in Bi are
those boxes in B~+I which are subboxes of b.

2. The leaf boxes are the boxes in B~. At each leaf in the tree-of-boxes we store
the point in V that is located in the leaf box.

3. The boxes at each level i, i.e., the boxes in Bi are linked together in a doubly
linked list.

4. From each box b in Bi there are pointers to (i) its father in B~_I, (ii) its sons
in Bi+l, (iii) each box b' in Bi satisfying dmin(b, b') <- Li, and (iv) the leftmost
leaf box in the subtree rooted at box b.

The tree-of-boxes has O(log n) levels and at most n boxes per level. For each
box b c Bi, there are at most O((2cqe-~) g) boxes b' in Bi such that dmi,(b, b') <- L~.
So the tree-of-boxes requires O((2cqe-1)kn log n) storage, and can be constructed
in O((2cqe-1)kn log n) time by starting from the root and proceeding toward the
leaves level by level.

Once the tree-of-boxes is available, the representatives in boxes may be chosen
in time proport ional to IB[= O(n log n). For boxes bl and b2, we can find points
Pl ~ b~, P2~ b2, such that d(p~, P2) = drain(b1, b2) in O(k) time. Then using the
tree-of-boxes, each of the edge sets E~ can be extracted in O(k(2cqe-1)kn) time,
and so G may be extracted in O(k(2cqe-~)kn log n) time.

Approximate Minimum Weight Matching on Points in k-Dimensional Space 575

5. Reducing to a Problem with Bounded Ratio of Edge Lengths. In this section
we describe how to partition the set V into Vo, V ~ , . . . , Vm, and in the process
obtain a matching Mo such that:

(i) Mo is a complete matching on V0 and w(Mo)<-w(Mopt(V))/n.
m

(ii) For 1-- i<j<_ m, drain(V/, Vj)> w(Mopt(~_Jt=a VI)).
(iii) For 1 --< i -- rn, dmax(V/)/drain(V/) ~--- 1458k2n 5 <- n 8, for n -> 12k z/3.

M " We make the following two observations. First, opt(I,.)i=~ V~) cannot contain
an edge joining a point in V,. to a point in Vj, for i # j . Thus

w(Mopt(Vi))=w Mopt Vi �9

Second, the graph induced by the symmetric difference of the matchings Mo and
Mopt(V) consists of alternating cycles and disjoint simple paths between pairs

m
of vertices in I._J~=~ V. So by the triangle inequality,

w Mopt Vi <- w(Mo) + w(Mopt(V)).

Thus if Mi is a complete matching on V~ such that w(M~) <- (1 + E)w(mopt(gi)),
m m

for 1 -< i_< rn, then Ui=o M~ is a complete matching on V such that w(U~=o M~)---
(1 + e + 2(1 + e)/n)W (Mopt(V)).

In Section 5.1 we describe how to partition V in O(n log n) time once we have
an upper bound u on w(Mopt(V)) such that u <- 9nw(Mopt(V)). In Section 5.2
we outline how such a bound u may be obtained in O(n log n) time.

5.1. Partitioning the Set of Points V. Let u be an upper bound on w(Mopt(V))
such that u -<- 9nw(Mopt(V)). We first split V into Vo and V - Vo, and then split
V - Vo into V1, 1/2, �9 �9 Vm. We briefly describe a data structure used in partition-
ing V. Given a set of points S and a parameter a, in O(IS] log[S[) time we can
construct a data structure D(S, a) that has the following properties:

1. D(S, a) is a simple undirected graph.
2. With each vertex v in D(S, a) is associated a cubical box b(v) of size a, and

all the points in b(v) c~ V are stored at vertex v.
3. For distinct vertices v and v', b(v) c~ b(v') = ~.
4. There is an edge between vertices v and v' iff dmi,(b(v), b(v')) <- a.
5. CJwo~s,~ (b(v)n V) = S.

We briefly describe how to construct D(S, a) in O([S[log[Sl) time. The con-
struction is an inductive construction. For k = 1 (the base ease) D(S, a) is obtained
as follows. The points are first sorted. Then the points are scanned in order, and
while scanning the points are split into disjoint intervals of size a and links are
created between pairs of intervals separated by a distance of at most a. Now
assume that k-> 2. Let S be the set of points obtained by projecting the points

576 P.M. Vaidya

in S onto the plane Xk =0. (X k denotes the k'th coordinate of a point in k-
dimensions.) D(S, a) is constructed from D(S, a) as follows. For a vertex
v ~ D(S, a) , let 7r(v) be the set of those points p such that p c S and the projection
of p onto the plane Xk = 0 lies in the box b(v). For eacla vertex v c D(S, a) , we
sort the points in ~-(v) by xk-coordinate, split the points in ~r(v) into cubical
boxes of size a by scanning them in increasing order of Xk-COordinate, and in
the process construct a linked list of these boxes. The edges in D(S, a) are
obtained by simultaneously scanning the lists of boxes corresponding to 7r(v)
and 7r(v') for each edge (v, v') in D(S, c~).

We have the following useful lemma about the connected components of
D(S, ce). We note that the connected components of D(S, a) are almost identical
to the neighbor-connected-components defined by Clarkson in [3].

LEMMA 6.

(I) I f p c b(v) ~ S, p' c b(v') n S, and V, v' are in distinct connected components
of D(S, c~), then d(p,p')>-ce.

(II) Let C be a connected component o f D(S, ce). We can construct a spanning
tree Ton the points in S ~ (UJ~,c b(v)) such that each edge in T is of length
at most 3ko~.

(III) I f p c b(v) n S, p' ~ b(v') n S, and v, v' are in the same connected component
of D(S, c~), then d(p,p')<- 3ke~[SI.

PROOF. (I) above follows from the definition of D(S, a). (I l l) follows from
(II) and the application of the triangle inequality. A spanning tree T as required
in (II) is obtained as follows. Let T be a spanning tree on the connected component
C. For each edge (v, v') ~ 7", we connect a point in b(v) c~ S to a point in b(v') n S.
Then for each vertex v in component C, we construct an arbitrary spanning tree
on the points in b(v)c~ S. This gives a spanning tree T on the points in S that
are stored at vertices in C. That each edge in T is of length at most 3ka follows
from the following two observations. First, if (v, v') is an edge in D(S, a) and
p c b (v) n S, p '~ b (v') c~ S, then d (p, p') <- 3 ka for any of the Lq metrics. Second,
for a vertex v in D(S, a) , dm,x(b(v)) < - ka. []

To partition V into Vo and V - V0 we construct D(V, u/27kn 3) and find its
connected components C 1 , . . . , C1. Let qi be the total number of points in V
stored at vertices in component Ci. As described in Lemma 6 above, we can find
a spanning tree T~, of length at most uqi/9n 3, on the qi points in V that are stored
in G. Once a spanning forest on D(V, u/27kn 3) is available, T~ may be obtained
in O(q~) time. In each such spanning tree T~ we choose some leaf point as a
representative point, and let V - Vo be the set of representative points in spanning
trees containing an odd number of points. Next, delete all the points in V - Vo
from trees T 1 , . . . , 1"1. Each of the spanning trees now contains an even number
of points, and the collection of spanning trees may be converted into a complete
matching Mo on Vo, of weight at most u/9n 2, using the procedure described in
Section 3. A tree is converted into a traveling salesman tour (with length at most

Approximate Minimum Weight Matching on Points in k-Dimensional Space 577

twice the length of the tree) on the set of points in the tree, and the best of the
two matchings induced by the tour is chosen.

To split V - Vo into 1 /1 , . . . , Vm we build D (V - Vo,2u). The sets of points
stored in the m connected components of D(V - Vo, 2u) are the sets V1, �9 �9 �9 Vm,
respectively. The entire process of splitting V, once u is available, takes
o(3kn log n) time.

We next show that the partition of V into Vo, V 1 , . . . , Vm, and the matching
Mo constructed above, have the properties (i), (ii), and (iii) mentioned at the
beginning of Section 5. Since each edge in T~ is of length at most u/9n 3,
~'i w(Ti) <- u~ 9n2" Hence

u w(MopO
(i) w(Mo)<-E w(T~) <- 9n2-<

i / I

Since distinct points in V - Vo must be stored in distinct connected components
of D(V, u/27kn3), by Lemma 6 we get

U
dmi.(V - Vo) >-

27kn 3"

As all points in V, are in the same connected component of D(V- Vo, 2u), by
Lemma 6 we have,

Thus,

for 1 ~ i ~ m, dmax (Vi) -< 6kun.

drnax(V/) ~ 1458k2n5"
(ii) for 1 ~ i -< m, drain(V/)

rn
It was shown in Section 5 that w(Mopt(U;=l V~)) <- w(Mo) + w(Mopt(V)). So from
the bound on w(Mo) it follows that

W o p t < 2u.

Since points in V~ and points in Vj are stored in distinct connected components
of D (V - Vo, 2u) for i#j , from Lemma 6 we may also conclude that,

(iii) for 1 -< i < j -< m, dmin(Vi, V f l - > 2 u > w Mopt Vt .

5.2. Finding a Good Upper Bound on Length of Shortest Matching. We run a
greedy heuristic to obtain a complete matching M on V such that w(M)~-
9nw(Mopt(V)), and let u = w(M). The heuristic proceeds in stages. At the begin-
ning of a stage we have a set of edges X, and a set of leftover vertices L, such
that each vertex in (V - L) has at least one edge in X incident on it and each
connected component of the graph (V - L , X) contains an even number of
vertices. Initially, V = L and X = ~.

578 P.M. Vaidya

During a stage we grow X and decrease the number of leftover vertices by at
least a factor of three. For a vertex p c L, let nearest[p] denote a nearest neighbor
of p in L-{p} , i.e., nearest[p] is a point in L - { p } such that Vp'~ (L - { p }) ,
d(p, nearest[p])<-d(p,p'). For each vertex p in L, we compute the nearest
neighbors of p and let E,n be the set of edges given by

E, , = {(p, nearest[p]): p ~ L}.

The remainder of the computation during a stage is as follows. Find the connected
components of the graph (L, E, ,) . Choose a representative vertex in each com-
ponent such that upon removing the representative vertex the remaining vertices
in the component still remain connected (note that such a vertex always exists).
The new set of leftover vertices is the set of representatives in the components
containing an odd number of vertices. All the edges in Enn are added to X except
those that are incident on a new leftover vertex.

In [log3 n] stages the number of leftover vertices falls to zero. Let L~ and X~
be the sets L and X at the beginning of the ith stage. We show that w(Mopt(Li+O) <-
3w(Mopt(Li)) and w(Xi+l) < - w(Xi)+2w(Mopt(Li)). Let Ei,, be the set E,n com-
puted during the ith stage. Since an edge in E~n connects some point p in Li to
a nearest neighbor o f p in Li-{p}, we have

w(E inn) <- 2w(Mopt(Li)),

and thus

w(X,+O <- w(X3 + w(Enn) <- w(Xi)+ 2w(mopt(Li)).

Each connected component of the graph (L~ - L~+~, X~+~ - Xi) contains an even
number of vertices, and so using the procedure in Section 3 we can construct a
complete matching M~ on L~- L~+I such that

w(M3<- w (X , + l - X ,) - < ' w(E ..) <- 2w(Mopt(L~)).

The symmetric difference of Mopt(L~) and M~ consists of disjoint alternating
cycles and augmenting paths between pairs of vertices in L~+I, and so by the
triangle inequality there exists a complete matching on Li+l whose weight is at
most w(Mopt(Li)) + w(Mi). Thus

W(Mopt(ti+l)) ~ w(Mopt(Li)) + w(Mi) <- 3 W(Mopt(L~)).

Since W(Mopt(Li+O) <- 3w(Mopt(Li)) and w(Xi+l)-< w(Xi) + 2w(Mopt(Li)), we
conclude that when the above procedure terminates X satisfies the condition
w(X) <-9nw(Mopt(V)), and X may be converted into a complete matching on V
without increase in weight as described in Section 3. Using the All-Nearest-
Neighbors algorithm in [13], at each stage En, may be found in O([L[log[LI)
time, and the entire procedure for computing the upper bound u may be imple-
mented in O(n log n) time.

Approximate Minimum Weight Matching on Points in k-Dimensional Space 579

6. Odd Degree Subgraphs and Complete Matchings. In this section we show
how to find an odd degree subgraph r of G, such that w(F) -< (1 + 1/n)w(~lopt(G)) ,
in O((2cqe-l)l"Sk(a(n, n))~ n) 2"5) time. The problem of finding a suitable
odd degree subgraph F of G is reduced to the problem of finding an almost
minimum weight complete matching in a graph G' related to G. In Section 6.1
we describe how to construct a graph G ' = (V', E') from G = iV, E) satisfying
the following properties:

(a) IV'I<-21EI+IVI and IE'I<-5(IEI+IVl),
(b) An odd degree subgraph F of G can be converted into a complete matching

M' in G' such that w(F) = w(M').
(c) A complete matching M' in G' canbe converted into an odd degree subgraph

F of G such that w(F)--- w(M').

From (b) and (c) above it follows that W(Oopt(G)) = W(Mopt(G')). Thus to find
a suitable odd degree subgraph F of G it suffices to find a complete matching
M' in G' such that w(M')<-(l+l/n)w(Mopt(G')).

Such a matching M' in G' may be found using the scaling algorithm for
weighted matching given in [6]. However, a faster way of finding such a matching
M' is to utilize the new scaling algorithm in [7]. The following lemma is proved
in [7].

WEIGHTED MATCHING LEMMA. Given a weighted undirected g~ph G = (~:, E),
a complete matching ~I in G such that w(J~4) <- (1 + 1/N)w(Mopt(G)) can be found
in O((I vl~(l~l, I vl) log([~l))~ logiN[V[)) time, where a is the inverse Acker-
mann function [12].

The time to obtain F is broken down as follows. Note that G' can be constructed
from G in O([VI+ [El) time, and the conversion between an odd degree subgraph
F of G and a complete matching M' of G' can also be done in O(I V[+ [El) time.
Thus once G is available, G' can be obtained in O([V[+ [El) time. Utilizing the
scaling algorithm in [7] a complete matching M' in G', such that w(M')<_
(1 + 1/n)w(Mopt(G')), can be found in

o((I V%(IE'I, IV'l) log([v'D)~ 51E'I log(hi V'D)

time. M' can be converted into an odd degree subgraph F of G such that

w(F) -< w(M') <- (I + I/n)w(Mopt(G')) <- (I + I/n)w(~opt(G))

in 0([V[+ IEI) time. Finally, since IEI = O((2cq)~:kn log n), I V'l = Oil Vl + IEI),
IE'I = O(IVI+IEI), and c~(IE'l, IV'l)= O(~(n, n)), we get that the time to find a
suitable odd degree subgraph F of G is O((2cqe-1)l"Sk(ct(n, n))~ n)2"5).

6.1. Constructing G'from G. We show how to construct a graph G ' = (V', E')
from the given graph G = (V, E) satisfying the following properties:

(a) Iv'I<-21EI+IvI and IE'I<-5(IEI+IVI).
(b) An odd degree subgraph F of G can be converted into a complete matching

M' in G' such that w(F)= w(M').

580 P.M. Vaidya

(c) A complete matching M ' in G' can be transformed into an odd degree
subgraph F of G such that w(F)--- w(M').

Then an MWCM in G' and a minimum weight odd degree subgraph of G have
the same weight.

Let 1, 2 , . . . , n denote the n vertices in V. We denote vertices in V' by ordered
pairs of positive integers, an ordered pair with i on the first coordinate and l on
the second coordinate will be represented by [i, l] (note that an unordered pair
of i and j is denoted by (i,j)). We let ai denote the smallest odd number greater
than or equal to the degree of vertex i in G. The edges incident on each vertex
i in G will be assumed to have been ordered in some manner. For an ordered
pair [i,j] of vertices in V, we let ~r([i,j])= [I, m] if (i , j)~ E, (i , j) is the lth edge
incident on i and the mth edge incident on j. G' is obtained from G as follows:

1. Corresponding to each vertex i in G, there is a cycle Ci of a~ vertices in G'.
Let [i, 0] , . . . , [i, a ~ - l] , denote the vertices in C~, and let s([i, I]) denote
([i, (l+ 1) mod a~]). If ~i > 1, then in cycle C~ there is an edge of weight zero
between [i, l] and s([i,/]), for 1 - < l - < t~.

2. Let (i ,j) ~ E and let ~r([i,j]) = [l, m]. Corresponding to edge (i,j) in G there
is a set of edges F((i , j)) in G', and each edge in F((i , j)) has the same weight
as (i,j).

There are four cases for F((i , j)) depending on o~ and %.

Case 1. a~= l, %= l,

F((i , j)) = (([i, l], [j, m])}.

Case 2. c~ =1, % >1,

F((i , j)) = {([i, l], [j, m]), ([i, l], s([j, m]))}.

Case 3. t~> l, %= l,

F((i , j)) = {([i, 1], [j, m]), (s([i, l]), [.L m])}.

Case 4. a~> l, % > l,

F((i , j)) = {([i, 1], [j, m]), (s([i, l]), [j, m]), ([i, l], s([.L m])), (s([i, l]), s([s m]))}.

By construction, IV'l--- 21El +lVl and [E'[-< 5([E[+l V]). The construction of G'
from G is illustrated in Figures 1 and 2. Figure 1 gives a graph G with four
vertices and four edges, and Figure 2 gives the corresponding graph G'.

4

Fig. 1. Graph G = (V, E). Ordering of edges: vertex 1, (1, 2), (1, 3), (1, 4); vertex 2, (2, 1); vertex 3,
(3, 1), (3,4); and vertex 4, (4, 1), (4,3).

Approximate Minimum Weight Matching on Points in k-Dimensional Space 581

[2, o]

Fig. 2. Graph G' = (V', E') .

We first show that given an odd degree subgraph F of G we can obtain a
complete matching M ' in G' of the same weight. Let h~/ be the matching
given by

h~/= {([i, l], [j, m]): (/ , j) E F, ~r([i,j]) = [l, m]}.

The vertices in cycle Ci that are not matched by an edge in M are partitioned
into intervals. Such an interval of unmatched vertices which contains an odd
number of vertices is called an odd interval. Let the number of odd intervals in
Ci be q~. As 35/matches an odd number of vertices in C~, q~ is even. We traverse
cycle C~ as follows. We start with a matched vertex, and from vertex [i, l] we
move to vertex s([/ , /]) . During the traversal we number the odd intervals in C~
from 1 to q~ in the order they are encountered. While traversing Ci, we also mark
each matched vertex in C~ that lies between two successive odd intervals numbered
2 r - 1 and 2r, 1 -< r_< (q~/2). Thus the vertices in W that are matched by an edge
in ~ / a r e divided into marked and unmarked vertices.

We shift the matching 3?/so that the number of odd intervals in each C~ reduces
to zero. If q~ > 0, then, for 1 <- r <- qJ2, shifting will add a vertex to the (2r - 1)st
odd interval in C~, and remove a vertex from the (2r)th odd interval in C~. Let

shift(([i, l], [A m])) =

"([/, 1], [A m]), [i, l] unmarked, [j, m] unmarked,
(s([i , /]) , [j, m]), [i, l] marked, [j, m] unmarked,
([i , /] , s([j, m])), [i, l] unmarked, [j, m] marked,

. (s([i , /]) , s([j, ra])), [i, l] marked, [j, m] marked.

A A

We obtain a matching M" from M by replacing each edge e in M by shift(e).
As w(shift(e)) = w(e), it follows that w(M") = w(M). The vertices in Ci that are

582 P.M. Vaidya

not matched by an edge in M" are divided into intervals, each containing an
even number of vertices. Then M" can be extended to a complete matching M'
in G', by matching up the unmatched vertices by edges of weight zero.

The conversion of a complete matching M' in G' to an odd degree subgraph
F of G goes as follows. For i ~j , the number of edges in M' which join a vertex
in Ci to a vertex in C~ can be either 1 or 2. Suppose the number is 2. Then these
edges are ([i, i], [j, m]) and (s([i,/]), s([j, m])) for some 1 and m. We can then
replace these two edges by the edges ([i, l], s([i,/])), ([j, m], s([j, m])), which
have zero weight and thereby decrease the weight of the matching. By such
replacements we can convert M' to a complete matching^ M in G' such that
w(M) <- w(M'), and if i # j there is at most one edge in M joining a vertex in
Ci and a vertex in Cj. As each Ci has an odd number of vertices, the number of
vertices in Ci that are matched to vertices outside C~ must be odd. Then we select
an edge (i,j) to be in F iff there is an edge between C~ and Cj in/~t. F is an odd
degree subgraph of G and w(F) = w(M) <- w(M').

Finally, we note that G' can be obtained from G in O(IVl+lEI) time, and the
conversion betweenan odd degree subgraph F of G and a complete matching
M' in G' may be accomplished in O(IVI+IEI) time.

7. Conclusion. Utilizing the underlying geometry, we have developed a fast
algorithm that finds an almost minimum weight complete matching on a set of
points in k-dimensional space. Given a set of n points, the algorithm runs in
O((2cq)l'SkE-l"5k(ol(n, n))~ n) 2"5) time, and the weight of the complete
matching obtained is at most (1 + e) times the weight of an MWCM on the given
set of points. Here Cq = 6 k 1/q for the Lq-metric, c~ is the inverse Ackermann
function, and e is a parameter less than or equal to 1.

Acknowledgments. The author would like to thank Professor C. L. Liu, S.
Kapoor, and P. Ramanan for helpful discussions.

Appendix. In this appendix we give a proof of Lemma 5 in Section 4.

LEMMA 5. I f e <- 1 then each point p in V has degree at most c log2 n in ~opt(G)
where c = 8 k§

PROOF. Let EL__ E such that the ratio of the maximum to the minimum edge
lengths in EL is at most 2. We show that there are at most 8 k edges in ~opt(G) r~ EL
incident on any point p, and then since the ratio of the maximum to the minimum
edge lengths in G is at most n 8, it follows that any point p in V has degree at
most 8 k+l log2 n in r Assume there are m edges (P, P l) , . . . , (P, Pm) in
~opt(G) n EL incident on a point p in V. Let drain(EL) be the length of a shortest
edge in EL. Among the points p l , . . . , Pm there cannot be a pair p', p", such that
d(p',p") < dmin(EL). Let us assume that there do exist such points p',p". In

Approximate Minimum Weight Matching on Points in k-Dimensional Space 583

Section 4 we showed the existence of a function f from Z-> 2 e such that for
each edge (p~, P2) ~ Z, f((Pl, P2)) forms a path between (Pt, P2), f((Pl, P2)) ~- E,
and w(f((p,,p2)))<-(l+e)d(p,,p2). Thus for e_<l, there is a path P in G
between p' and p", of length at most 2d(p', p")< 2dmin(EL). Then the graph
induced by the set of edges r - {(p, p'), (p, p")} u P has sr0aller weight than
~bopt(G), and by Lemma 4 this graph also contains a subgraph where every point
in V has odd degree. This would contradict the minimality of ~bopt(G). All the
points p ~ , . . . , p , , are located in a ball Cp of radius 2dmin(EL) centered at p.
For l<_i<_m, let Cp~ be the ball of radius dmin(EL)/2 centered at p~. No two
of the balls C~ Cpm intersect, and the intersection of Cp~ and Cp contains
a ball of radius dmi.(Ez)/4. Then since the number of disjoint balls of radius
dmi,(EL)/4 that can be packed in a ball of radius 2dmi,(EL) is at most 8 k, m
cannot exceed 8 k. []

References

[1] D. Avis, A survey of heuristics for the weighted matching problem, Networks, 13, 1983, 475-493.
[2] K.L. Ciarkson, Fast algorithms for the all nearest neighbors problem, Proc. IEEE Syrup. on

Foundations of Computer Science, 1983, pp. 226-232.
[3] K.L. Clarkson, Fast expected-time and approximation algorithms for geometric minimum

spanning trees, Proc. 16th Annual A C M Syrup. on Theory of Computing, 1984, pp. 342-348.
[4] J. Edmonds, Matching and a polyhedron with 0-1 vertices, Z Res. Nat. Bur. Standards, 69B,

1965, 125-130.
[5] H. Gabow, An efficient implementation of Edmond's algorithm for maximum matching on

graphs, J. Assoc. Comput. Mach., 23, 1976, 221-234.
[6] H. Gabow, A scaling algorithm for weighted matching on general graphs, Proc. 26th Annual

Syrup. on Foundations of Computer Science, 1985, pp. 90-100.
[7] H. N. Gabow and R. E. Tarjan, Faster algorithms for graph matching, Technical Report,

Department of Computer Science, Princeton University, Princeton, NJ.
[8] M. Iri, M. Murota, and S. Matsui, Linear time heuristics for minimum-weight perfect matching

on a plane with an application to the plotter algorithm. Unpublished (1980).
[9] D.A. Plaister, Heuristic matching for graphs satisfying the triangle inequality, J. Algorithms,

5, 1984, 163-179.
[10] H. Samet, The quadtree and related hierarchical data structures, Technical Report, Department

of Computer Science, University of Maryland, College Park, MD.
[11] K.J. Supowit and E. M. Reingold, Divide-and-conquer heuristics for minimum weighted

Euclidean matching, SIAMJ. Comput., 12, 1983, 118-143.
[12] R.E. Tarjan, Data Structures and Network Algorithms, SIAM, Philadelphia, PA, 1983.
[13] P.M. Vaidya, An optimal algorithm for the all-nearest-neighbors problem, Proc. 27th Annual

Syrup. on Foundations of Computer Science, 1986.

