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Abstract 
A set of 2n points on the plane induces a complete weighted un- 
directed graph as follows: The points are the vertices of the 
graph and the weight of an edge between any two pints is the 
distance between the points under scme metric. We study the 
problem of fading a minimum weight corn lete matching 
(MWCM) in such a graph. We give an O(n2 P (logn)4) algo- 
tithm for findiig an MWCM in such a graph, for the L, 
(munhutrun), the L2 (eucfidean), and rhe L, metrics. We also 
study the bipartite version of the problem, where half the points 
are painted with one color and the other half are painted with 
another color. and the restriction is that a point of one color may 
be matched only to a point of another color. We present an 
O(nZ5 logn) algorithm for the bipartite version, for the L1 , L2, 
ancat La, metrics. The running time for the bipartite version can 
be further improved to 0 (n’ (logn)‘) for the L 1 and L, metrics. 

1. Introduction 

Given a complete wcightcd undirected graph on a set of 2n 
vertices, a complete matching is a sel. of n edges such that each 
vertex has exactly one edge incident Ion it. The weight of a set 
of edges is the sum of the weights of the edges in the set, and a 
minimum weight complete matching (MWCM) is a complete 
matching that has the least weight among all the complete 
matchings. 

We study the problem of findii~g an MWCM in the com- 
plete graph induced by a set of 2n points on the plane. The 
points am the vertices of the graph, and the weight of an edge 
between any two points is the distance between the points under 
some metric. We shall investigate two common metrics, the LI 
(munhunan) metric, and the Lz (eucltiun) metric. (We note 
that the L, metric can be converted to the L 1 metric by rotating 
the co-ordinate system by forty-five degrees, and so any algo- 
rithm for the f.1 metric can be trivially modified to work for the 
L, metric.) The input consists of 2n points which specify the 
locations of the vertices on the plane Each point p is given as 
an ordcnzd pair @,.p,), where pr and pr denote the x and y 
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coordinates of p respectively. The distance between two points p 
and 9 under the L, metric is given by ( lpX -9= 1’ + jpy -6 I’)“‘. 
We shall assume that the metric defining the edge weights is 
fixed. 

We also sntdy the bipartite version of the MWCM problem 
for points on the plane. In the bipartite version, half the points 
are painted with one color and the other half are painted with 
another color, and the restriction is that a point of one color can 
be matched only to a point of the other color. 

The complete graph induced by a set of 2n points on the 
plane is entirely specified by the locations of the vertices. So 
the problem of fmding an MWCM in such a graph differs from 
the problem of finding an MWCM in a general complete. graph 
in that UIC size of the input is O(n) rather than n(n2). The 
input is sparse since the edge weights are implicitly defined by 
the underlying geometry. It is interesting to investigate if the 
gcomclric nature of lhe MWCM problem for points on the plane 
can be exploited u, obtain an algorithm for its solution which is 
faster than the 8(n3) algorithm [6. 111 for general graphs. WC 
note that several heuristics for fading a complete matching of 
small weight (but not necessarily of minimum weight) on points 
on the plane have been dcvelopcd [2, 9, 171. but the only known 
way to find an MWCM on 2n points on the plane was to nm the 
MWCM algorithm for general graphs which requires B(n3) time. 
In this paper we show that geometry does help to obtain a faster 
algorithm. We give an O(n’*’ (logn)4) algorithm for fmding an 
MWCM in the complete graph induced by a set of 2n points on 
the plane, for the L 1 and L2 metrics. For the bipartite version of 
the MWCM problem for points on the plane, we give an 
O(n2’ logn) algorithm for the L1 and .Lz metrics. For the 
bipartite case, the running time of the MWCM algorithm can be 
further improved to 0 (n (IognP) for the L 1 metric. The space 
requirement of all the algorithms is 0 (n logn). 

The algorithms described in the paper will be essentially 
the well-studied linear programming primaldual algorithms for 
weighted matching, namely the Hungarian method [lo. 11. 141 
for bipartite matching, and Edmond’s algorithm [4. 11. 141 for 
general matching. The primal-dual algorithms for weighted 
matching associate a dual variable with each vct~cx of t.he given 
graph, and hc slack associated with an edge is the wcighhl of the 
edge minus lhe sum of the dual variables associated with the end 
vertices of the edge. The algorithms can bc subsL&ally 
speeded up for points on the plane by the application of two key 
ideas. First, associating a weight with each vertex mint) which 
is suitably related to Lhe dual variable corresponding LO the ver- 
tcx and which changes much less frequently than the dual vari- 
able. and implicitly maintaining tic dual vtiablc using the 
weight. Second. reducing the computation of the minimum slack 
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for celzain subsets of edges to gcomctric query problems that 
involve the weights associated with the vertices and that can be 
efficienUy solved using known data structut~s in computational 
geometry. Similar ideas can be used to speed up algorithms for 
rclatcd problems like bottle-neck maLching [I 11 for points on the 
plane, and the transportation problem [I 1. 141 where the sources 
and the sinks an: sites on the plane and the cost of transporting 
from a source to a sink is proportional to the distance bctwecn 
ihe source and the sink. 

In section 2 we discuss some gcomctric query problems 
that arise naturally in the implcmcntation of the weighted match- 
ing algorithm for points on the pfanc, and sketch solutions to 
them using using known data structures in computational 
gcomctry. In section 3 WC give the algorithm for the bipartilc 
version of the MWCM problem for points on the plane. The 
bipartite case is easier, and serves lo illustrate the maid ideas that 
are used in developing the algorithm for the general case. HOW- 
cvcr, the algorithm for the general cast is complicated because of 
certain subsets of vcrticcs of odd cardinality (blossoms 141) and 
will be given in the full version of the paper. 

WC assume a real RAM model of computation 1151 stan- 
dard in computational gocmctry, so arithmetic operations (i.c. 
addition, subraction. multiplication, division), memory access 
operations, and comparison operations, on real numben: require 
constant time. For the case of the Lz metric, we make the addi- 
tional assumption that either square tuots can be computed in 
constant time (so that edge weights can be obtained in constant 
time) or that the edge weights have been precomputed and are 
available at the start of the algorithm. 

2. Geometric query problems arising in matching on the 
plane 

During the execution of the matching algorithm, we are 
repeatedly required to compute the minimum slack for certain 
subsets of edges. To perform this computation efficiently we 
shall need a good solution to the query problems described 
telow. 

Let d(p. 9) denote the distance between points p and 9, 
W.r.1. to a set of points P such that there is a weight w(p) asso- 
ciated with each point p in P, we define the fohowing terms. 
For subsets P ,, Pz or I’. shorresr If t, P21 dcnotcs an edge 
f&s /of ). 1~; E I’ I. p; E P,, such that 

For a point 9, nearesf [q, P 1 denotes a point p l E P such that 

and shortest 19, P] denotes the edge (q, nearest [9, P I). 
Problem 1. 
Given a set of points P and a weight w(p) for each point p 

in P, preprocess P so that for a given query point q, 
nearest 19, P ] can be found quickly. 

Problem 2. 
We are given a set of points P, an ordering 

Pl<P2< **+ <pip1 of the points in P, and a weight w(p) asso- 
ciated with each point p in P. Let Lpi,pj) be the set of all points 
pr in P such that i <k<j. We have to ptcpmccss P, so that 
given iI, ~UCIJJ point 9, and an intctval l/~i,pj) such that 
1 Ii < j <JP I+ 1. neczrcstlg. hi. p,) 1 can bc cornputcd quickly. 

In Problems 1 and 2 above the set P is static. WC shall 
also require a solution to the semi-dynamic version of Problems 
1 and 2. In the semi-dynamic version a new point can be added 
to P but a point can never be d&ted from P. Furthermore, P is 
totally ordered by the following rule. For a pair of points p, 
p’ E P, p cp’ iff p was added Lo P before p’. 

Problem 1 comes up in the bipartite case as well as the 
general case, and its solution enables us to efficiently compute 
the minimum slack for various subsets of edges. Problem 2 and 
the semi-dynamic versions of Problems 1 and 2 arise because of 
certain subsets of vertices of odd cardinality, called blossoms. in . 
Edmond’s algorithm for gcncrai weighted matching. One type 
of blossom corresponds to intervals in some ordering on the set 
of vertices (poinls), and given a vcrlex 9 and a blossom B of this 
type, we am required to compute the minimum slack over all 
edges between 9 and vertices in B. This leads to Problem 2. 
The semi-dynamic versions arise because of blossoms merging to 
form bigger blossoms. 

The solutions to the above query problems use scgmcnt 
ttccs I IS]. a data structure common in computational gcomctry. 
The segment tree for the inlerval ii. j). i.j integers and j z i, is a 
rooted binary tree defined as follows. The interval [i. j) is asso- 
ciatcd with the mot of the scgmcnt tree. If j>i+l then the left 

subtree is the segment tree for [i. r+i) and the tight subuce is 
, . 

the segment tree for [f+l, j): if j=i+l then the left and right 

subtrees are empty. The segment tree data structure extends 
naturally to an ordered sequence aI <a2 < * * . <a, via the 
correspondence between the interval [i. j) and the interval 
[ai, Uj>. 

For the case of euclidean (Lz) metric the weighted voronoi 
diagram (WVD) [5. 161 of the points in P provides an adequate 
solution to Problem 1. Such a voronoi diagram divides the plane 
into IPl regions (some possibly empty), there being a region 
Vor@) for each point p e P. Vor@) is the region given by 

Vor@) = {p”: VP’E P. d@“,p)-w(p) 5 d@“,p’)-w@‘)}. 

The WVD of P can be constructed and preprocessed in 
O(IPIlog((P I)) time, so that given a qucty point 9, in 
O(log(lP I)) time WC can find a point p in P such that 
9 E Vor(ii) 13. 5. 121. 

For the cast of the L, metric WC use the Willard-Luckcr 
modification of the two-dimensional range tree [ 151 to provide a 
suitable solution to Problem 1. Let H,(u, 6) (&(a. b)) dcnotc 
the set of all points p on the plane such that a Ip,Sb 
(a Spy 5b). The range tree (RT) for P is as follows. At the top 
level is a segment tree for the non-decreasing sequence of the x- 
coordinates of the points in P. At a segment tree node r associ- 
ated with the interval [a, b) of the x-axis, is stored an ordered 

list of points in P nH,(u, b), with the points being ordered by 
y-coordinate. In addition to storing p E P nH,(a, b) in the 
ordered list at w. we store along with p the points 
nearest [(a. p,), P n HAa, b) n H&+ -1 I. 
nearest [(a. py), P n H,(u. b) n H,(-m, p,,) I. 
nearest [(b, p,), P nH,(u. b) n HJpy. -) I. and 
nearest [(b, p,), P n HAa. b) n H,,+, pJ 1. The RT for P can 
be constructed in U((Pllog(tPI)) time, and using the RT 
nearest [q, P ] can be computed in O(log(lPI)) time for a given 
point 9. 
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Lemma 1. Given a set of points P on the plane, and a 
weight W(D) associated with each point p in P. P can be prepro- 
ccsscd in O(IPllog(lPI)) time. so that given a query point 9, 
neurc.~t Iq, P 1 and shortesf 19. P 1 can be found in 0 (log(],P I)) 
time. n 

The data structure for Problem 2 ihas two lcvcls. At the top 
level is a segment tree for the ordered sequence 
PI<P2< ... <PIPI of the points in P. and at a segment tree 
node associated with the interval [Pt,1r1) is stored the WVD for 
the set [pk,pr) in the case of the L2 metric. and the RT for, the 
set [pk. ~1) in the case of the L 1 metric. 

Lemma 2. Let P={plcpz< -.. cp~p~} be an ordered 
set of points on the plane, and let then:: be a weight w(p) asroci- 
ated with each point p in P. P can be preprocessed in 
O(lP100g(JP1))2) time, so that given a query point 9 and an 
hxval [pi* pi) such that 15 i < j I]P l-1.1, nearest [9, [pi* pj)] and 
shorreesr [9, Ipi* pi)] CalI he fOUlId in 0 ( (lOg(lP ]:))2 ) time. w 

Using standard techniques [13] the above mentioned static 
data StNCtWCS for Problems 1 and 2 can be converted into semi- 
dynamic data StNCtWCS to allow for insertions into P. The 
semi-dynamization increases the quer, time and the amortized 
time per insertion by a factor of at most 2 rlog2Pl. 

3. Weighted bipartite matching on tlhe plane 

WC arc given two sets U and V each consisting of n points 
on the plane. 0 and V induce a complctc bipartite graph whose 
vertices arc the points in U and V, and the weight of an edge 
(Ui, v,), U; E U, vi E V. is the distance between 11; and vi under 
some metric. We consider the L, and the L2 metrics. The 
problem is to find a minimum wefgbt complete matching in the 
complete bipartite graph on U and V. 

LexUl,.. .u, be an enumeratioln of the vertices in U, and 
let v,, . . . .v, be an enumeration of the vertices in V. The Hun- 
garian method [lo ,l 1. 141 for weighted bipartite matching asso- 
ciates dual variables a; and fl; with vertices Ui and v; respec- 
tively. A feasible matching consists a’f a matching M and ~&ml 
variables ai and flj such that 

ai+Pj s d(Ui* Vj), l.SiSn, ISjSn 

CXi + pj = d(U;, Vj), (Ui, Vj)E M 

A feasible matching which is complete is a minimum weight 
complete matching [ll, 141. We start with dual variables 
flj=min{d(ui,vj)}, Iljln, and Ixi=O, lsisn. SO the 

I 
empty matching is initially feasible. The method proceeds in 
phases and during each phase the feasible matching M is aug- 
mcnted by an edge. So there arc n phases. 

A vcncx is exposed if it is not matched by an cdgc in tbc 
current matching M. An ulfernufing path is a path that alter- 
natcly traverses an edge in M. and an edge not in M. An nug- 
menring parh is an akcmating path between two exposed ver- 
ticcs. An edge (Ui. Vj) is admissible iff & +Pj=d (Ui. Vj). A 
phase consists’ of searching for an augmenting path among 
admissible edges. 

For each exposed vcncx in V, we grow an alternating tree 
moted at the vertex. Each vcncx in (I u V which is in an alter- 
nating tmc is reachable from the root of the tree via an altcmat- 
ing path that uses only admissible edges. S (7) denotes the set 
of ah vcrticcs Y E V (u E U) such that. Y (u) is in an alternating 
tree. Let F = U -I: At the beginning of a phase S consists of 
the exposed vertices in V, and F = II. Let 6 be defined as 

6= min 
Idi E F. "j E s 

{d(Ui9Vj)-ai-Pjl* 

WC USC a variable A to keep track of the sum of dual changes 6, 
and associate a weight w(v) (w(u)) with each vertex v in V (u in 
U). The weights am used to implcmcnt a phase cfficic:nUy. At 
the beginning of a phase A = 0, for each Ui E lf, w (Ui) := ai. and 
for each vj e V, w(vj) .= !3j. Dcpcnding on whcthcr 8 equals zcm 
or cxcccds xcm, the alternating trees are grown or then: is a dual 
variable change. 
Case I. 6 = 0, and (ui, vj), Ui E F, Vj o S, is admissible. 

If Ui is exposed then construct an augmenting path among 
the admissible edges by backtracking from Vj to the root 
and augment M, and the phase ends: 
If Ui is matched to vk then 

F := F - {Ui}, T := T U {Ui}. S := S U {Vt}, 

W(Ui):=Cri+A, W(Vk):=flr-A. n 

Case 2. 6 > 0. 
A:=A+& 
For each vertex Ui E T, ai := ai - 6; 
For each vertex Vj E S, pj := pj + 6. n 

Note that for each vertex Vj E S, pj equals w (Vj)+A, for 
each vertex Ui E T, ai equals w(u;)-A, and for each VCNX in F 
its duaI variable equals its weight. So it suffices to update A, 
and the weights associated with the vertices, rather than expti- 
citly updating the dual variables a;. pi. At thy end of a phase 
the correct vahrcs of the dual variables may be computed using A 

and the weights. Using the Elation between the weights and the 
dual variables WC may write 

6= min u~F VESId(~.v)-~(~)-~(~)l--. 

We shah USC the data structures used in the solution of 
Problem 1 in section 2, namely the weighted vomnoi diagram 
(WVD) and the range tree (RT). to efficiently compute 6, and an 
edge (u. v), UE F, v E S, such that d(u, v)-W(U)-w (v)=&+A. 
Thmu hout a phase, S is partitioned into Si and SL such that 
[Sa(<k. Also, F is partitioned into Fr,Fa, . . ,Ff,oq. 
(some of the Fi’s possibly empty) such mat /FilS [no’ , 
15 i I rnO.1. We maintain the following data structures. 
1. A priority queue containing the edge shortest[u, S, ] for 

each u E F. The priority of an edge (u, v) in this queue is 
d(u, v>-w(u)-w(v). 

2. A priority queue containing the edges shortesr[v, Pi], 
1 <is rn”l. for each vertex v in Sa. The priority of an 
edge (u. v) in this queue is also d(u. v) - w (u) --w (v). 

3. The WVD/RT for each of the sets F’t , Fa. . . . , F faosl. 
6 and an edge for which 6 is achieved can be obtained in 
O(logn) time by examining an edge with minimum priority in 1 
and 2 above. Vcrticcs added to S are always inscrtcd into Sa. 
In order IO maintain the condition that )Sa]<fi, whcncver the 
sixc of Sa reaches the threshold of 6 WC add ail Lhc vcrticcs in 
Sa lo S, and rcsct Sa to the null set. Then ncarest[u, Sr ] must 
bc rccomputcd for cvcry u E F. From Lemma 1 in section 2. 
this recomputation may be done in O(niogn) time using a 
WVD/RT for S 1, leading to total of 0 (n ‘~“logn) operations for 
the recomputations in a phase. 

An ins&on into Sa and a deletion from I: each require 
O(n’.’ logn) operations. Suppose a vcrtcx v is inscrtcd into Sa. 
Then for each Fi. 1 I;is; rn’,‘l, shonestlv, Fij is computed in 
O(logn) time using the WVD/RT for Fi, Hcncc an insertion 
costs O(nasIogn) operations. Suppose a vcrtcx u is dcletcd 
from F. and SUP~SC u E Fi. Then the WVD/RT for Fi is 
recomputed, and shorrest[v, Fi] is also recomputed for all the 
vertices v in Sa. So a deletion costs 0 (n’.‘logn) operations. 
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Since thcrc are U(n) insertions into Sa and O(n) dclclions 
from F, a phase takes O(nt~‘logn) time. This gives a total nm- 
ning time of O(n2.510gn) for the weighted bipartite matching 
algorithm for points in the plane. In the full paper we show that 
the running time of the bipartite matching algorithm can be 
further improved to 0 (nZ(logn)3> for the L t metric. 

4. Weighted general matching on points in the plane 
In the full paper we shall describe an O(n*.’ (10gn)~) algo- 

rithm for finding ;~n MWCM in the complctc graph induced by 
2n pints on the plane. Two things arc crucial to the running 
time of the algorithm: (i) associating weights with vcrticcs and 
blossoms which arc suitably rclatcd to the dual variables and 
which change much less frcqucntly than the corresponding dual 
varinblcs, and implicitly maintaining the dual variables using the 
weights. (ii) Educing the computation of the minimum slack for 
certain subsets of edges to geometric query problems (&scribed 
in section 2) that involve the weights associated with the vcr- 
ticcs. 

5. Conclusion 

We have shown that the underlying geometry can be 
exploited to speed up algorithms for weighted matching when 
the vertices of the graph are points on the plane and the weight 
of an edge between two points is the distance between the points 
under some metric. The techniques described in the paper can 
be used to speed up algorithms for related problems like bottle- 
neck matching [ 1 I] for points on the plane, and the transporta- 
tion problem [Il. 141 when: the sources and the sinks are located 
on the plane and the cost of transporting from a source to a sink 
is proportional to the distance between the source and the sink. 
The tcchniqucs in the paper can also bc utilized IO speed up scal- 
ing algorithms 17, IS] for matching and rclatcd problems by a 
factor of about 6 for points on the plane. Finally, we note that 
for the Li ‘and the L, metrics the algorithms in the paper easily 
cxtcnd to the cast whcrc the vcrticcs of ~hc graph arc points in 
tf-dimensional space (n fixed) mtir than points on the plane. 
For points in J-dimensional space we use cl-dimensional range 
trees instead of 2-dimensional range trees [15], and this increases 
the running time of the matching algorithms by at most 
0 (log@“. 
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