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Abstract
A set of 2n points on the plane induces a complete weighted un-
directed graph as follows: The points are the vertices of the
graph and the weight of an edge between any two points is the
distance between the points under scme metric. We study the
problem of finding a minimum weight complete maiching
(MWCM) in such a graph. We give an O(s2> (logn)*) algo-
rithm for finding an MWCM in such a graph, for the L,
(manhattan), the Ly (euclidean), and the L. metrics. We also
study the bipartite version of the problem, where half the points
are painted with one color and the other half are painted with
another color, and the restriction is that a point of one color may
be maiched only to a point of another color. We present an
O (n*’ logn) algorithm for the bipartite version, for the L,, L,
and L., metrics. The running time for the bipartite version can
be further improved to O (12 (logn)*) for the L, and L., metrics.

1. Introduction

Given a complete weighted undirected graph on a set of 2n
vertices, a complete matching is a set of n edges such that each
vertex has exactly one edge incident on it. The weight of a set
of edges is the sum of the weights of the edges in the sct, and a
minimum weight complete matching (MWCM) is a complete
matching that has the least weight among all the complete
matchings.

We study the problem of finding an MWCM in the com-
plete graph induced by a set of 2a points on the plane. The
points are the vertices of the graph, and the weight of an edge
between any two points is the distance between the points under
some metric. We shall investigate two common metrics, the L
(manhattan) metric, and the L, (euclidean) metric. (We note

.that the L_ metric can be converted t> the L, metric by rotating

the co-ordinate system by forty-five degrees, and so any algo-
rithm for the L, metric can be trivially modified to work for the
L., metric.) The input censists of 2n points which specify the
locations of the vertices on the plane. Each point p is given as
an ordered pair (p,.p,), where p, and p, denote the x and y
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coordinates of p respectively. The distance between two points p
and ¢ under the L, metric is given by (|py~gx|" +lpy—qy|)'".
We shall assume that the metric defining the edge weights is
fixed.

We also study the bipartite version of the MWCM problem
for points on the plane. In the bipartite version, half the points
are painted with one color and the other half are painted with
another color, and the restriction is that a point of one color can
be matched only to a point of the other color.

The complete graph induced by a set of 2» points on the
plane is entirely specified by the locations of the vertices. So

the problem of finding an MWCM in such a graph differs from
the problem of finding an MWCM in a general complete graph
in that the size of the input is O(n) rather than Q(n?). The
input is sparse since the edge weights are implicitly defined by
the underlying geometry. It is interesting to investigate if the
geometric nature of the MWCM problem for points on the plane
can be exploited to obtain an algorithm for its solution which is
faster than the ©(n3) algorithm [6, 11] for gencral graphs. We
note that several heuristics for finding a complete matching of
small weight (but not necessarily of minimum wcight) on poinis
on the plane have been developed {2, 9, 17], but the only known
way to find an MWCM on 2 points on the plane was to run the
MWCM algorithm for general graphs which requires 6(n>) time.
In this paper we show that geometry does help to obtain a faster
algorithm. We give an O (n** (logn)*) algorithm for finding an
MWCM in the complete graph induced by a set of 2» points on
the plane, for the L and L, metrics. For the bipartite version of
the MWCM problem for points on the plane, we give an
0(n*3logn) algorithm for the L; and L, metrics. For the
bipartite case, the runnin§ time of the MWCM algorithm can be
further improved 1o O {n* (togn)®) for the L, metric. The space
requirement of all the algorithms is O (n logn).

The algorithms described in the paper will be essentially
the well-studied linear programming primal-dual algorithms for
weighted matching, namely the Hungarian method {10, 11, 14]
for bipartite matching, and Edmond’s algorithm [4, 11, 14] for
general matching. The primal-dual algorithms for wcighted
matching associate a dual variable with cach veriex of the given
graph, and the siack associated with an edge is the weight of the
edge minus the sum of the dual variables associated with the end
vertices of the cdge. The algorithms can bc substantially
speeded up for points on the plane by the application of two key
ideas. First, associating a weight with each vertex (point) which
is suitably related to the dual variable comesponding to the ver-
tex and which changes much less frequently than the dual vari-
able, and implicitly maintaining the dual variable using the
weight. Second, reducing the computation of the minimum slack
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for cenain subsets of edges 1o geometric query problems that
involve the weights associated with the vertices and that can be
efficiently solved using known data structures in computational
geometry. Similar ideas can be used to speed up algorithms for
related problems like botile-neck matching [11] for points on the
planc, and the transportation problem (11, 14] where the sources
and the sinks are sites on the plane and the cost of transporting
from a source to a sink is proportional to the distance between
the source and the sink.

In section 2 we discuss some gcometric query problems
that arise naturally in the implementation of the weighted match-
ing algorithm for points on the planc, and skctch solutions to
them using using known data structures in computational

geometry. In scction 3 we give the algorithm for the bipartite
version of the MWCM problem for points on the plane. The
bipartite case is easier, and serves to illustrate the main ideas that
are used in developing the algorithm for the general case. How-
ever, the algorithm for the general case is complicated because of
certain subsets of vertices of odd cardinality (blossoms [4]) and
will be given in the full version of the paper.

We assume a rcal RAM model of computation }{15] stan-
dard in computational gocmetry, so arithmetic operations (i.c.
addition, subraction, multiplication, division), mcmory access
operations, and comparison opcrations, on real numbers require
constant time. For the case of the L, metric, we make the addi-
tional assumption that either square roots can be computed in
constant time (so that edge weights can be obtained in constant
time) or that the edge weights have been precomputed and are
available at the start of the algorithm.

2. Geometric query problems arising in matching on the
plane

During the execution of the maiching algorithm, we are
repeatedly required to compute the minimum slack for certain
subsets of edges. To perform this computation efficiently we
shall need a good solution to the query problems described
below.

Let d(p, q) denote the distance between points p and gq.
W.rt. 10 a set of points P such that there is a weight w(p) asso-
ciated with cach point p in P, we definc the foliowing terms.
For subsets Py, P of P, shortest|Py, P3| denotes an cdge
1.2 P} € Py, pz € Py, such that

d@1.p2)-wp-w(p3)
{d@y.p2)=wpi)-wp)}.

= min
Pr1€P;, pre Py

For a point ¢, nearest{q, P denotes a point p" € P such that
d(g. p*)-w(") = min {d(g. p)~w(p)},
peP

and shortest|q, P] denotes the edge (g, nearest{q, P]).
Problem 1.
Given a set of points P and a weight w(p) for each point p
in P, preprocess P so that for a given query point g,
nearest[q, P can be found quickly.

Problem 2.
We are given a set of points P, an ordering
P1<p2< ‘' <pjp of the points in P, and a weight w(p) asso-

ciated with cach point p in P. Let [p;, p;) be the sct of all points
Py in P osuch that i<k<j. We have to preprocess P, so that
given a. query point ¢, and an interval |p;, p;) such that
V<i<j<|P|+ 1, nearestlq, 1p;. pj)] can be computed quickly.
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In Problems 1 and 2 above the sct P is static. We shall
also require a solution to the semi—dynamic version of Problems
1 and 2. In the semi-dynamic version a new point can be added
to P but a point can never be delcted from P. Furthermore, P is
totally ordered by the following rule, For a pair of points p,
P e P, p<p iff p was added to P before p'.

Problem 1 comes up in the bipartite case as well as the
general case, and its solution enables us to efficiently compute
the minimum slack for various subsets of edges. Problem 2 and
the secmi-dynamic versions of Problems 1 and 2 arise because of
certain subscts of vertices of odd cardinality, called btossoms, in
Edmond’s algorithm for gencral weighted matching. One type
of blossom corresponds to intervals in some ordering on the sct
of vertices (points), and given a vertex ¢ and a blossom B of this
type, we arc required 1o compute the minimum slack over all
edges between g and vertices in B. This leads to Problem 2.
The semi-dynamic versions arise because of blossoms merging to
form bigger blossoms.

The solutions to the above query problems use scgment
trees [15], a data structure common in computational gcometry.
The scgment tree for the interval {4, j), i,/ integers and j >, is a
rooted binary tree defined as follows. The interval [i, j) is asso-
ciated with the root of the scgment tree. If j>i+1 then the left

subtree is the segment tree for Li, f'—?]) and the right subtree is

the segment tree for [f—'—;—”,j)', if j=i+1 then the left and right

subtrees are empty. The segment tree data structure extends
naturally to an ordered sequence a;<a,< '‘' <a, via the
correspondence between the interval [i, j) and the interval
[a,-, a,)

For the case of euclidean (L,) metric the weighted voronoi
diagram (WVD) {5, 16] of the points in P provides an adequate
solution to Problem 1. Such a voronoi diagram divides the plane
into |P| regions (some possibly empty), there being a region
Vor (p) for each point p € P. Vor(p) is the region given by

Vor@)={p”:Vp'eP, d@p”.p)-w@)sd@p”.p)-wp)}.

The WVD of P can be constructecd and preprocessed in
O({P|log(|P|)) time, so that given a qucry point ¢, in
O(log(}P])) time we can find a point p in P such that
qge Vor(p) 13, 5, 12}.

For the casc of the L; metric we use the Willard-Lucker
modification of the two-dimcnsional range tree [15] to provide a
suitable solution to Problem 1. Let Hy(a. b) (Hy(a, b)) denote
the set of all points p on the planc such that a<p,<b
(aspy<b). The range ree (RT) for P is as follows. At the top
level is a segment tree for the non-decreasing sequence of the x-
coordinates of the points in P. At a segment tree node y associ-
ated with the interval [a, b) of the x-axis, is stored an ordered

list of points in P N Hy(a, b), with the points being ordered by
y-coordinate. In addition to storing pe PnH,(a, b) in the
ordered list at wy, we store along with p the points
nearest[(a, py), P NHy(a, b) "Hy(py. )],

nearest((a, py), P NH (a, b) N Hy(—oo, py) ],

nearest[(b, py), P NHx(a, b) "H{(py, =) ], and
nearest((b, p,), P NH,(a, b) "H,(~a, p,)). The RT for P can
be constructed in G(|P|log(|P])) time, and using the RT
nearest[q, P] can be computed in O (log(|P|)) time for a given
point g.



Lemma 1. Given a sct of points P on the plane, and a
weight w(p) associated with each point p in P, P can be prepro-
cessed in O(|P|log({P[)) time, so that given a query poirt g,
nearest|q, P] and shortestlq, P| can be found in O (log(]P|))
lime. m

The data structure for Problem 2 has two levels. At the top
level is a segment trec for the ordered sequence
p1<pa< - <pjp) of the points in P, and at a scgment tree
node associated with the interval [py, p)) is stored the WVD for
the cot In. n) in tha ~snca nf tha 1 wnatma amd tha DT fao sha

il SCU 1P, Py I UK $aSe U1 In Lo MGG, afia uie N 101 iU

set [pe, pp) in the case of the L, metric.

Lemma 2. Let P={p,<py< +-- <pjp|} be an ordered
set of points on the plane, and let there be a weight w(p) associ-
ated with each point p in P. P can be preprocessed in
O(|P|(og({P))?) time, so that given a query point ¢ and an
interval [p;, p;) such that 15 <j <|P|+ 1, nearestlq, [pi, p,)) and
shortest[q, [p;, p,)] can be found in O ((log(|P[))?) time. m

Using standard techniques [13] the above mentioned static
data structures for Problems 1 and 2 can be converted into semi-
dynamic data structures to allow for insertions into P. The
semi-dynamization increases the query time and the amortized
time per insertion by a factor of at most 2 [log,P1.

3. Weighted bipartite matching on the plane

We arc given two sets U and V cach consisting of n points
on the plane. U and V induce a complete bipartite graph whose
vertices arc the points in U and V, and the weight of an edge
(u;, v,), e U, v, € V, is the distance between u; and v under
some metric. We consider the L, and the L, metrics. The
problem is to find a minimum weight complete matching in the
complete bipartite graph on U and V.

Letuy, * - - ,u, be an enumeration of the vertices in U, and
let vy, - - - ,v, be an enumeration of the vertices in V. The Hun-
garian method [10 ,11, 14] for weighted bipartite matching asso-
ciates dual variables o; and f; with vertices #; and v; respec-
tively. A feasibie matching consists of a matching M and dual
variables o; and B; such that :

a,v+Bde(u,-,vj), I1<ign, ISan

o; + Bj = d(u,-, Vj), (M,‘, Vj)E M

A feasible matching which is complete is a minimum weight

complete matching [11, 14]. We start with dual variables

B = min {du;v;)}, 15j<n, and o =0, 1sisn. So the
t

cmpty matching is initially feasible. The method proceeds in
phascs and during each phasc the feasible matching M is aug-
mented by an edge. So there are n phases.

A veriex is exposed if it is not matched by an edge in the
current maiching M. An alternating path is a path that alter-
nately traverses an cdge in M, and an edge not in M. An aug-
menting path is an alternating path between two exposed ver-
lices. An edge (u;,v;) is admissible iff o;+PBj=du;,v). A
phase consists§ of searching for an augmenting path among
admissible edges.

For cach exposed vertex in V, we grow an altemating tree
rooted at the vertex. Each vertex in U WV which is in an alter-
nating tree is rcachable from the root of the tree via an altemat-
ing path that uscs only admissible edges. § (7) denotes the set
of all vertices ve V (we U) such that v () is in an alternating
trec. Let F=U-T. At the beginning of a phase S consists of
the exposed venices in V, and F = U. Let & be defined as

o= s{d(ui-\{f)-fli—ﬁj}-

u; €

min
F. v;e
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We usc a variable A to keep track of the sum of duat changes 8,
and associatc a weight w(v) (w(u)) with cach vertex v in V (« in
U). The weights arc uscd to implement a phasc cfficiently. At
the beginning of a phase A =0, for cach u; e U, w () =, and
for cach v; € V, w(v;} = ;. Decpending on whether § equals zcro
or cxceeds zero, the alternating trees arc grown or there is a dual
variable change.
Case 1. 5 =0, and (u;, v;), y; € F, v;e §, is admissible.

If u; is exposed then construct an augmenting path among

the admissible edges by backtracking from v; to the root

and augment M, and the phase ends;

If u; is matched to v, then

F=F-{u}, T=Tu{y}), §=Su{wkh
w) =+ A, wi) =B—A. ®

Case 2.5 > 0.

A=A+

For each vertex ;e T, o =0y — §;

For each vertex v;e §, B; =B; + 5. m

Note that for each vertex v;e S, B; equals w(v))+4, for

each vertex u; € T, o; equals w(u;)—A, and for each vericx in F
its dual variable equals its weight. So it suffices to update A,
and the weights associated with the vertices, rather than expli-
citly updating the dual variables oy, B;. At the cnd of a phasc
the correct values of the dual variables may be computed using A

and the weights. Using the relation between the weights and the
dual variables we may writc

8= min s{d(u,v)-w(u)—w(v)}—A.

uefF, ve
We shall usc the data structurcs used in the solution of
Problem 1 in scction 2, namely the weighted voronoi diagram
(WVD) and the range tree (RT), 10 efficiently compute 8, and an
edge (u,v), ue F, ve S, such that du, v)—w(u)—w(¥)=8+A.
Throughout a phase, § is partitioned into §, and §, such that
[S2|€vVn. Also, F is paritioned into Fy,Fa, -, F,09,
(some of the F;’s possibly empty) such that }F;|< i noqu,
1<i < [n®5]. We maintain the following data structures.

1. A priority queue containing the edge shortest[u,S,] for
each u e F. The priority of an edge (4, v) in this queue is
du,v)—wu)-w().

2. A priority queue containing the edges shortest(v, F;],
1<i< [n®%)], for each vertex v in §,. The priority of an
edge (u, v) in this queue is also d(u, V) ~w(u)—w(v).

3. The WVD/RT for cach of the sets Fy, Fa, - - -, F[,05].

8 and an edge for which 8 is achieved can be obtained in
O(logn) time by examining an edge with minimum priority in 1
and 2 above. Vcrtices added to § are always inserted into .
In order 10 maintain the condition that |S;|SVa, whenever the
size of S5 reaches the threshold of Vn we add all the verices in
§, 10 S, and reset S, to the null set. Then nearest|u, 1] must
be recomputed for every ue F. From Lemma 1 in scction 2,
this recomputation may be donc in O(nlogn) time using a
WVD/RT for §;, leading to total of O (n'*logn) operations for
the recomputations in a phase.

An inscrtion into S; and a deletion from F cach requirc
0("0.5 logn) operations. Suppose a veriex v is inserted into Ss.
Then for cach F;, 1Si< a5, shortestiv, F;] is computed in
O (logn) time using the WVD/RT for F;. Hcnce an inscriion
costs (n™logn) opcrations. Supposc a veriex u is deleted
from F, and supposc we F;. Then the WVD/RT for F; is
recomputed, and shortest[v, F;] is also recomputed for all the
vertices v in S5. So a deletion costs O (n®3logn) operations.



Since there are O (n) insertions into S, and O(n) deletions
from F, a phase takes O (n'*logn) time. This gives a total run-
ning time of O(n%3logn) for the wcighted bipartite maiching
algorithm for points in the plane. In the full paper we show that
the running time of the bipartite matching algorithm can be
further improved to O (n2(logn)*) for the L, metric.

4. Weighted general matching on points in the plane

In the full paper we shall describe an O(nz‘S (logn)“) algo-
rithm for finding an MWCM in the complete graph induced by
2n points on the plane. Two things are crucial to the running
time of the algorithm: (i) associating weights with vertices and
blossoms which are suitably related to the dual variables and
which change much less frequently than the corresponding dual
variables, and implicitly maintaining the dual variables using the
weights, (ii) reducing the computation of the minimum slack for
certain subsets of edges 1o geometric query problems (described
in section 2) that involve the weights associated with the ver-
ticcs.

5. Conclusion

We have shown that the underlying geometry can be
cxploited to speed up algorithms for weighted matching when
the vertices of the graph are points on the plane and the weight
of an edge between two points is the distance between the points
under some metric. The techniques described in the paper can
be used to speed up algorithms for related problems like bottle-
neck matching [11] for points on the plane, and the transporta-
tion problem {11, 14] where the sources and the sinks are located
on the plane and the cost of transporting from a source to a sink
is proportional to the distance between the source and the sink.
The techniques in the paper can also be utilized 10 speed up scal-
ing algorithms {7, 18] for matching and rclated problems by a
factor of about ¥a for points on the plane. Finally, we note that
for the £y and the L, metrics the algorithms in the paper easily
extend to the case where the vertices of the graph are points in
d-dimensional space (d fixed) rather than points on the plane.
For points in d-dimensional space we usc d-dimensional range
trees instcad of 2-dimensional range trees [15], and this incrcases
the running time of the maiching algorithms by at most
O (logn)*.
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