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Abstract 

Let S _c [~" be a convex set for which there is an oracle with the following property. Given any 
point z ~ N" the oracle returns a ' Y e s "  if : .~  S; whereas if z r  S then the oracle returns a 
" 'No* together with a hyperplane that separates z from S. The feasibility problem is the problem 
of finding a point in S: the convex optimization problent is the problem of minimizing a convex 
function over S. We present a new algorithm for the feasibility problem. The notion of a 
volumetric center of a polytope and a related ellipsoid of maximum volume inscribable in the 
polytope are central to the algorithm. Our algorithm has a significantly better global convergence 
rate and time complexity than the ellipsoid algorithm. The algorithm for the feasibility problem 
easily adapts to the convex optimization problem. 

Keywords: Convex programming; Linear programming; Optimization: Complexity 

1. Introduction 

Let S c_ R"  be a convex  set for which there is an oracle with the fo l lowing property.  

The oracle accepts as input any' point in N".  If the input ~ ~ S then the oracle returns a 

" Y e s " ;  whereas  if  z ~ S then the oracle returns a " ' N o "  along with a vector  c ~ R "  

such that S _c {x: c 'rx > elz}.  (Typical ly ,  S is o f  tile form S = {x: g , ( x )  ~< 0. l ~ i ~< p} 

where g i ( x )  are different iable convex  functions.)  The feasibi l io '  problem is the problem 

of  finding a point in ,5' g iven an oracle for S. Let  g ( x )  be a convex  funct ion such that 

g iven a point z ~  N"  in the domain  o f  g we can compute  a vector  c such that 

{x: g ( x )  ~< g(  z)} _ { x: cTx >/ crz}. The convex  optimization problem is the problem of  

nf inimizing g ( x )  over  S. In this paper we shall descr ibe a new algori thm for the 

feasibili ty problem.  An easy modi f ica t ion  to the algori thm for the feasibili ty p rob lem 
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will lead to an algorithm for the convex optimization problem. We note that a 

preliminary version of  this paper appeared in [9]. 

In the case of the feasibility problem we shall assume that S is contained in a ball of 

radius 2 t centered at the origin and that if S is nonempty then it contains a ball of radius 

2 -L. Let x ~ be tile point that minimizes ~,(x) over S and let y be a given parameter. 

In the case of the optimization problem we shall assume that S is contained in a ball of 

radius 2 L centered at the origin and that the set {x: , r e  S, g ( x ) -  g(,v c'm) ~< y} 

contains a ball of radius 2 L: the output of the algorithm is a point x" e S such that 

g ( x  : " ) -  g( x '~pt) ~< y. We note that our algorithm easily adapts to the different versions 

of the feasibility and the optimization problems described in [4]. 

A generic iterative algorithm for the feasibility problem is as follows. We maintain a 

region R such that S_c R. At each iteration we choose a test point z in R and call the 

oracle with :, as input. We halt if ~ ~ S. So suppose z ff S. Then the oracle returns a 

vector c such that V.v ~ 5", c rx  > cTz. Let /3 ~< crz. Then S c_ (R C3 {x: crx  >/3})  and 

R is reset to be the region (R N {x: c-rx>/3}) .  As tile algorithm proceeds R shrinks and 

its volume decreases at a certain rate. If S is nonempty then it contains a ball of radius 

2 -L and the algorithm halts with a point in S before the volume of  R falls below 2 - ,,L 

If S is empty then the algorithm halts the first time the volume of R falls below' 2 - ' 'L 

and since R contains S this gives a proof that S is empty. During the course of the 

algorithm the description of R can become complicated and choosing the test point can 

become expensive: so if the region R becomes too complicated we replace R by a 

simpler region that contains R; such a replacement trades volume for computational 

efficiency and the algorithm still converges. 

The well-known ellipsoid algorithm [4,5] falls in this generic scheme; in the el l ipsoid 

algorithm the region R is an ellipsoid and the test point used is the center of the 

ellipsoid. Another algorithm due to Levin [5] uses simplices instead of ellipsoids. Our 

algorithm also follows the above scheme. In our case the region R is a bounded 

full-dimensional polytope P = {x: Ax > b} where A ~ R ' ' x ' ,  b ~ ~ " .  The test point 

we use is the point that minimizes the determinant of the t tessian of the logarithmic 

barrier for P. Specifically,  the loearithmic~ barrier is the function - F___,'.",= i ln(aTx - b~) 

and its Hessian evaluated at x, denoted by H ( x ) .  is given by 

m 

H(.,-) = g 
, : ,  (oI.,-- b,): 

ln(det( H( x))) where d e t ( H ( x ) )  where a~I denotes the ith row of ,4. Let F ( : c ) = ~  

denotes the determinant of H ( x ) ,  and let ~o be the point that minimizes F ( x )  over P. 

The point ~o will be called tile volumetric center of P.  We use o) (or a good 

approximation to w) as our test point. The function F ( x )  is strictly convex and a 

Newton-type method can be used to compute a good approximation to o,, efficiently. 

The polytope P is also trimmed from time to time (i.e., some of  the planes defining P 

are dropped) so that the number of planes in the description of P does not grow beyond 

O(n). 
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The volume of P decreases by a fixed constant factor (independent of the dimension 

n) at each iteration on the average, and our algorithm halts with a point in S (or with the 

conclusion that 5' is empty) in O(nk)  iterations. During each iteration we have to invert 

an n • n matrix (and solve a system of linear equations), and possibly query the oracle 

once. Let T be the cost (in terms of number of arithmetic operations) of one query to the 

oracle, Then the total number of  arithmetic operations performed by our algorithm is 

O(TnL +naL), and the total number of calls to the oracle is O(nL). If we use fast matrix 

multiplication for performing the matrix inversion the total number of arithmetic 

operations reduces to O(TnL + M(n)nL), where M(n)  is the number of  operations for 

multiplying two n • n matrices. (It is known that M ( n ) =  O(n-?38), see [3].) The 

ellipsoid algorithm was previously the best known algorithm for the feasibility problem. 

In the ellipsoid algorithm the volume falls by a [iactor of  about (1 - 1/n) at each 

iteration, and the number of iterations is O(n2L). During each iteration we have to 

perform one query to the oracle together with a rank one correction to an n X n matrix 

and a matrix-vector nmltiplication. So the total number of arithmetic operations in the 

ellipsoid algorithm is O(Tn2L + n4L), and the total number of calls to the oracle is 

O(n2L). Thus our algorithm performs asymptotically fewer operations as well as fewer 

calls to the oracle. The reason for stressing the number of calls to the oracle is that in 

many' cases the cost of querying the oracle far exceeds the other costs in the algorithm 

[4]. It is worth noting that using fast matrix nmltiplication does not reduce the number of 
operations performed by the ellipsoid algorithm. 

Next. we mention some recent related work. The analytic center of a polytope has 
been widely used in interior point methods for linear programming, and algorithms for 

convex optimization based on the analytic center have been suggested in [10-12] but 

without any convergence analysis. An algorithm based on a maximal inscribed ellipsoid 

is given in [13]: this algorithm has a rate of convergence (i.e., volume decrease) 

comparable to the one in this paper, but computing a maximal inscribed ellipsoid is 
nmch more expensive (at least by a factor of ~n-n) than computing the volumetric center. 

A natural question that arises is: Is there a simple but intuitive explanation for why is 
the volumetric center o) a good test point'? The question may be answered as follows. 

Let E(H(x), x, r) denote the ellipsoid given by 

{y: 
E(H(x), x, I )_cP  and may be thought of as a local quadratic approximation to P. 
E(H(o)), w, 1)has  the largest volume among all such ellipsoids E(H(x), x, 1) and is 
hence a maximum volume quadratic approximation to P. A plane through a~ divides 

E(H(~o), w, 1) into two parts of  equal volume: so there is a good chance that a plane 
through co divides P into two parts with approximately equal volume (loosely speaking), 

So if the process of cutting P through ~o is iterated the volume would be expected to 
decrease at a good rate. 

There is also a simple intuitive reason for why our algorithm has a faster rate of  

convergence than the ellipsoid algorithm. In the ellipsoid algorithm the half-ellipsoid to 

which the set S is localized after an oracle query is immediately enclosed in another 
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smaller ellipsoid and the vector c generated by the oracle is not used in subsequent 
steps: as a result a considerable amount of information is given up at each step. Since 

our algorithm works with polytopes instead of ellipsoids the cutting planes generated by 

the oracle are maintained for several steps after they are generated and continue to 

directly influence the choice of  the test point. Furthermore, hyperplanes are dropped and 

the polytope P is trimmed not at each step but whenever necessary. As a consequence 

more of  the information generated by the oracle gets utilized and the volume of P 

shrinks at a geometric rate independent of pT. 
A byproduct of our algorithm is an algorithm for solving linear programming 

problems which performs a total of O(mneL + M(n)nL) arithmetic operations in the 

worst case, where m is the number of constraints and n is the number of variables; this 

gives an improvement in the time complexity of linear programming for m > n 2, see [8]. 

We also note that if the polytope P is not trimmed in our algorithm (i.e., we do not 

discard any plane generated by the oracle) we still get a convergent algorithm that halts 
in O(n2L 2) iterations. Finally, note that ~my problem that can be solved by the ellipsoid 

algorithm can be solved with a better time complexity by our algorithm. 
In Section 2 we give an overview and describe the algorithm for the feasibility 

problem. In Section 3 we discuss three theorems which summarize the behaviour of a 

Newton-type method for minimizing F(.v) and which characterize how F(co) changes 
when we add (remove) a plane to (from) the polytope P. In Section 4 we briefly 

describe how an easy modification to the algorithm for the feasibility problem leads to 

an algorithm for the convex optimization problem. In Section 5 we discuss variants of 
the basic algorithm in Section 2. In Section 6 we propose algorithms for solving linear 
programming problems that follow a path of volumetric centers or hybrid centers. In 

Section 7 we state and prove various properties of  F(x). In Section 8 we prove the 

theorems introduced in Section 3. 

2. An overview 

In this section we shall describe the algorithm for the feasibility problem. But first we 

shall introduce some notation. Let P be the bounded full-dimensional polytope 

P = { x :  Ax>~b}, 

where A ~ N ' ' •  b ~ IR" and .x-~ IR". Let H ( a )  be defined as 

H ( x )  = 

a ia  T 

,=, (a; , , - -  b,.) 

T denotes the ith row of A. ft(x) is the Hessian of the logarithmic barrier where a i 

function 5"~i_l . . . .  l n ( a ~ x -  bi) and is positive definite for all x in the interior of P. Let 

F(x) be defined as 

F ( x )  = } l n ( d e t ( H ( x ) ) ) ,  
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where det (H(x))  denotes the determinant of H(x) ,  and let co be the point that 

minimizes F'(x)  over the polytope P. The point co will be called the volumetric center 

of P. Let V F ( x )  (V2F(x) )  denote the gradient (Hessian) of F ( x )  evaluated at x. Let 

aTH (x) -'a, 
cri( x ) -  ~ , l <<. i <~ m. 

By Lemma I (Section 7). the gradient V F ( x )  may be written as 

m a I" 

VF(x) = - < ( " )  a L ,  - b, 
i= 

Let Q(x)  be defined as 

Q(.") = Y'. o-,(.~-) 
ai aT 

, : ,  ( a > -  b,)" ' 

Note that O(x)  is positive definite over the interior of P. Q(x)  is a good approximation 
to V 2F(x);  specifically, the quadratic forms ~ T V i F ( x ) #  and ~TQ(x)~ satisfy the 

condition 

V ~ E ~ " ,  5 ~ T Q ( x ) ~ > ~  T V 2 F ( x ) ~ > ~ T Q ( x ) ~ .  

Since Q(x)  is positive definite this condition implies that F ( x )  is a strictly convex 

function over the interior of P. Let i t (x)  be the largest number A satisfying the 
condition that 

V ~ " ,  ~TQ(x)#>~A~TH(x)~. 
Note that / , (x)  > min i .< i .< ,,,{ O-i( X)}. 

We shall now describe the algorithm for the feasibility problem. The algorithm starts 

out with the simplex P = { x :  x j >  - 2  L, 1 <~j<~n, ~5! IXj~<n2L}. (Note that the 

algorithm could start with any polytope whose volumetric center is easy to compute, say 
for example a box.) Since S is contained in a ball of radius 2 L centered at the origin, 

initially S c_ P. Throughout the algorithm S and P satisfy the relation S c_ P. Let 6 and 
~. be small constants such that ~ <  l0 -4, and ~ <  10-36. At the beginning of each 

iteration we have a point z E P such that 

F ( z )  - F(co)  ~< ~" 4/.z(co). 

(Note that when the algorithm starts the polytope P is just a simplex and we can 

explicitly solve the equation V F ( x )  = 0 to obtain the volumetric center of a simplex; in 

this case the analytic center [6] is also the volumetric center.) The computation 
performed during an iteration falls into two cases depending on the value of min~.< ~.< ,,, 

Case I. min~ .</.<., {cri(z) } >/~'. In this case we add a plane to the polytope P. First, 
the oracle is called with the current point z as input. The algorithm halts if z e S; 

otherwise the oracle returns a vector c such that 

V x ~  S, c T X ~  c Tz. 
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We choose 13 such that eTz >/ /3 and 

ctH( :) - ' c 

Let ,~= ( A  e) r and let b = ( b / 3 ) r .  A and B are reset as 

A~---X. b*--l). 

Since to shifts due to the addition of a plane to P.  we use a Newton- type  method to 

nlove closer to co as follows. 

For j = I to [30 1n(2~:-4 s)] do z ~ z - 0 .18Q(  z ) - '  r e ( : ) .  

Case 2. rain t .< ~.< ,,: {eri( z)} < e. In this case we ,e lnove a plane from dae polytope P.  

W.l.o.g. suppose that % ( z )  = min~ .:, .:~ ,,, { o'-,( z)}. Let a,,, = c, b,,, = / 3 ,  A = ( s c) "r, and 

b=(t ) /3 )r .  A and b are reset as 

a <-- A~, b < - - b .  

Since a~ shifts due to the removal of a plane, we use a Newton- type  method to move 

closer to oo as follows. 

For j =  1 to [ 3 0 1 n ( 4 c - ~ ) ]  do z * - - - - 0 . 1 8 Q ( z ) - ~ V F ( z ) .  

The convergence l emma below summarizes  tile behaviour  of the algorithm. 

C o n v e r g e n c e  L e m m a .  Let 6<~ 1() -4,  let ~:<~ 1()-3~S. and let pk denote the value of. 

F( ~o) at the beginning of  the kth iteration. Then at the beginning of  each iteration z 
satisfies the condition 

F(  z)  - F(  co) <~ ~ (  ~o). 

Furthermore, the fbllowing statements hold. 

(1) If  Case I occurs during the kth iteration then 

Ok+ I _ Ok >~ _ _  

5 

(2) I f  Case 2 occurs during the kth iteration then 

pk _ p~+ I ~ 5~,. 

The proof" of the Convergence Lemma is based on Theorems 1, 2 and 3 in Section 3 
and will be given in Section 3. 

Bounding the number of  iterations 

Let a "k denote the volume of the polytope P at the beg inn ing  of the kth iteration. 

Using the Convergence  Lemma we shall next obtain an upper bound on "a -k, and show 

that the algorithm halts in O(nL)  iterations. First. we shall show that 

pa >~ pO + ~k,:. 

Since P is bounded,  the number  of bounding  planes of P is at least n + 1, and to start 



P.M. VaMya / Mathematical Programming 73 (1996) 291-341 297 

with this number is exactly n + I. Thus by the kth iteration Case 1 must have occurred 

at least as often as Case 2; otherwise tile number of planes would have fallen below 

n + 1 which is not possible. So by the kth iteration Case 1 must have occurred at least 

4k times, and Case 2 could have occurred at most L,k times. Hence 

p * - p ~  since e ~< 10--6. 

We shall next bound 7r ~. It is well-known (see [6]) that if .v ~ is the point that 

maximizes the logarithmic barrier over P, then 

P = { x: ( x - x" )T H (  .,-~ ) ( ~ - .~ ~' ) .< ,,, e }. 

Then from the relation between determinants and volume (see [4]) it follows that 

v o l u m e ( P ) ~ < ( 2 , , , ) " ( d e t ( H ( x  ) ) )  , / 2 V ( 2 m ) , , ( d e t ( H ( ~ , ) ) ) - , / 2  

~< ( 2 m ) "  e -F{~~ 

Since ~',"__ t %(x)  = n (see Claim 3, Section 7.1 ), Case 2 is forced to occur at an iteration 

if the number of planes defining P is greater than n / e ,  and hence m never exceeds 
n / e .  Then since pO> - ( n ( L  + 1) + ln(n + 1)), we get that 

ln(rr k) ~< n ln(2m)  - pk 

~< n l n ( 2 n / s )  - po_  ~ks' 

C n ( L + l n ( 2 n / s )  + 1 )  + I n ( n +  1 ) -  ' 7kg.  

Thus tile volume of P must fall below 2 ,,L in O(nL) iterations. Hence tim algorithm 
nmst halt in O(nL) iterations since S c P  and S contains a ball of  radius 2 t. if it is 
nonempty. 

Bounding the number of arithmetic operations 
Note that since ~ '=  ~o-,(x)= n (see Claim 3. Section 7.1), Case 2 is forced to occur 

in the algorithm if file number of planes grows beyond n / e .  So m = O(n). The number 
of operations per iteration may be accounted for as follows. 

1. Since m = O(n), the quantities %(.~), 1 4  i ~ m ,  may be evaluated in O(n ~) 
operations. 

2. O(1) steps of the Newton-type method are executed per iteration, and so Q(=)-  J 
and V F ( z )  are computed O(1) times. V F ( z )  may be expressed as 

m Oi 
VF(  ~) = - L m(7-) 

(I~" Z -- b i i=I  

So once o'i(z.), 1 <~ i<<. m. are available, Q(z.), Q(=) - I  and VF(=)  can be evaluated in 
O(n ~) operations. 

3. The oracle is called at most once and one such call costs 7" operations. 
4. Computing /3 such that cTH(z) - IC/ (cTz-  /3)2= �89 I/2 also requires O(n 3) 

operations. (It suffices to compute /9 approximately.) 

Thus the number of operations per iteration is O ( T +  nS). Using fast matrix multipli- 

cation the number of operations per iteration may be reduced to O ( T + M ( n ) )  where 
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M(n) is the number of operations lot multiplying two n X n matrices. (It is "known that 
M(n)  = O(n238), see [3].) Since the number of iterations is O(nL), the total number of 

operations is O(TnL + haL) without fast matrix multiplication and O(TnL + M(n)nL)  
with fast matrix multiplication. The total number of calls to the oracle is O(nL). 

3. A d d i n g / d e l e t i n g  a plane and moving  closer to the volumetr ic  center to 

In this section we shall discuss three theorems on which the proof of the Convergence 
Lemma in Section 2 is based. 

Theorem 1. Let ~3 ~ 10 4, let z ~ P,  let r I = Q( z ) -  IV F( z), and let r be a scalar such 

that 0 <~ r <~ 0.2. Let . . . .  Ar~ where A is dCf~ned a,s fol lows.  

Thell 

1. 

{ f 'F(  z)  - F ( w )  ~ &v"ff( co) then A = r else A = 

the jb l lowing stotcmenrs hold. 

/ r E ( : ) -  F ( w )  <~ 6V't, ( w)  then 

,,~,':( ~( :)) ' /~ 

( r r ( : ) % )  ~j: " 

F ( : , ' ) -  F ( ~ o ) ~  ( 1 -  0.71, + 1 . 9 , " ) ( F ( : )  F(oo)) .  

2. / f F ( z ) -  F(~o) > (S~ (w)  fiTen 

( r -  2 . 6 5 r : ) a  
F ( : ) -  F(: ' )  > 

2 G  

Theorem I states that a Newlon-type algorithm for minimizing F(x )  will converge 
linearly if storied from a point z such that F ( : ) -  F(w)  % 6~/'/z(~) . 6~< 10 -~. It also 

states that taking a Newton-like step from a point :, such that F(z)  - F(a.,) > 6V//,(o_,) 
wilidecrease F by at least fl(1/pv~z). 

The next two theorems address the following question: by how much does the 
minimum value of F(o,,) increase (decrease) when we add (remove) the constraint 
cTx/> /3 tO (from) the set of constraints defining the polytope P? We shall require some 
additional notation to denote the polytope obtained by adding (removing) a plane to 
(from) P. and the related functions and matrices. Let ASER '~'• bE[[~ '~:, and let /:7 be the 
polytope /:7= {x: A~v> b}. Let a, r denote the ith row of ,,{', let / ] ( x )  be defined as 

'~' a, a I ,q(.~-) = s 

*=, ( aT . , - -  r, ,):  " 

let / 7 ( x ) =  �89 /]( x))), and let & be the point that minimizes f~(x) over the 

polytope /~. Let # / x )  = Eq~bT(.v) ' a j ( a T . v  - ~,~}:. ~ .< / -< ,r,. let 

'~' a, a7 
0( . , )  = s <( - , )  

, , ( a : . , - -  

and let ~ ( x )  be the largest number A such that V~ e R", s c r(~( x),~ > A~r / l (  .v}~. 
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T h e o r e m  2. Let A = ( A c )  v, b = ( b / 3 ) v  and / ~ = P N { x :  cTx>~/3}. Let z ~ P ,  let 

a~ < 6~<10  -4 and let a<~61~(z). Suppose that F ( z ) -F (oa )<~az t z (w)  and that 
cVH(z ) - i e / (cTz  /3),_ i t/2 Then - -  = 7 0 ~  . 

k~(z) - k~(ff~) ~< 0.33( 6c~ ) , /2 ~< 0 .436~g- (~)  

and 

F( ff;) -F(w)>~ ~cr'/2 

T h e o r e m  3. Let A = ( A c )  T, b = ( b / 3 )  T and P=/ :T f3{x :  cTx>~/3}. Let z r  let 
ot ~< 6 ~< 10 -4,  and let F( z) - F( og) <~ a2tz( w). Suppose that cTH(z) I C/(cTz -- 13) 2 

~< rain{ a ,  /.t( Z)}. Then the polytope 1 ~ is bounded, 

and 

F(o9)  - b~(ff~) ~< 5~ .  

The proofs of the three theorems will be given in Section 8. We shall next give a 
proof of the Convergence Lemma introduced in Section 2 based on these theorems. 

Convergence  L e m m a .  Let 6<~ 10 -4,  let ~<~ 10-36, and let pk denote the value of 
F(oJ) at the beginning of the kth iteration. Then at the beginning of each iteration z 
satisfies the condition 

- F(o ) 

Furthermore, the Jbllowing statements hold. 
I. I f  Case 1 occurs during the kth iteration then 

pk+,- pk>  

2. If  Case 2 occurs during the kth iteration then 

pk _ pk+ 1 ~< 5s. 

Proof.  We shall prove the Lemma by induction. Suppose at the beginning of the kth 
iteration we have a point z such that F(z)-F(~o)~<~41~(w). The computation 
performed during the iteration depends on the value of min~ ~<i~ ,,,{ o-i( z)}. 

Case 1. minl~<i.<,,,{o-i(z)} >~ e. In this case the algorithm halts if z is feasible; 
otherwise the oracle returns a vector c ~ ~ "  and we compute a /3 such that 

cTH( Z) - tC 
- 

(e z- /3): 
Let A =  (A c) T and b = (b /3 )  T. The polytope /:7= P f3 {x: cTx>~ /3}. From the defini- 
tion of /x(z) we have that 

min {cri(z)} ~< ~ ( z ) .  
I ~< i~< m 



30O 

So in this case 

~ min 
I ~ i ~ m 

and 
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{ o - , ( ~ ) }  < ~ ( ~ ) .  

6,: ~ a~(z). 
Thus the conditions of Theorem 2 are satisfied with c~ = r and we may conclude that 

and 

# ( : )  - #(~ , )  ~ 0.33(a2~) ~'~ ~ 0.43av'~(~) 

During the iteration A and b are reset to A- and b. a few Newton steps are then 

performed to move closer to the new volumetric center and the iteration ends. So from 

the definition of pk we can conclude that 

p,+ l  _ p * >  ! ( & , ) t / 2  

After A and b have been reset tile point z satisfies the condition 

F ( z )  - F(o~)  ~< 0 .33 (62e )  '/2 <~ 0.436~/'/z(o)) , 

and from this condition we have that 

The Newton steps to move closer to the new volumetric center are as follows. 

For j =  1 to [30 ]n (2e  45)1 do z*-z-O.18Q(z)-'VF(z). 
By Theorem 1, it follows that if F(z)- F(oJ)<~ 6]~co) then 

F ( Z -  0 . 1 s o ( z ) - '  VF( z)) - F( w) ~ 0 . 9 4 ( F ( z )  - F ( w ) ) .  

Hence after the Newton steps the resulting point z satisfies 

g ( z )  - F ( w )  ~ 0.5+ -5 ~< e ~ ( w )  

as required. 

Case 2. min~ .< ,< ,,,{o-~(z)} < e. In this case we remove a plane from the polytope P. 

W.l.o.g. suppose that o-,,,(z)= rain I <. i<.,,{o-i( z)}. Let a,, = c, b,, = / 3 ,  A = ( ~ c ) T ,  and 

b = (b  /3)T. The polytope P =/7C~ {x: c rx  >/3}. Note that by the definition of p.(z)  

rain {o-i( Z)} -~ [2,(Z). 
I -<.< i~< m 

So in this case we have that 

cTH( z) ~c 
- % ( z ) =  rain { ~ r , ( z ) } ~ < n l i n { e , # ( z ) } .  (C~- /3)~ ~ -< ,-<,,, 

Thus the conditions of Theorem 3 are satisfied with o~ = ~- and we may conclude that 

F ( w )  - Pz(&) ~< 5 s ,  
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and that 

F( 
During the iteration A and b are reset to A-and b respectively, a few Newton steps are 

then performed to move closer to the new volumetric center and the iteration ends. So 

by the definition of pk it follows that 

p k _ 0 k - 1 ~ < 5 ~ .  

After A and b have been reset z satisfies the condition 

F ( z )  - F(o~) ~< m i n ( 4 ~ ( w ) ,  6~//.~(w) ). 

The Newton steps for moving closer to the new volumetric center are as follows. 

For j =  I to [30 l n ( ag -3 ) ]  do z ~ z - O . 1 8 Q ( z ) - ' V F ( z ) .  

From Theorem 1. it follows that if z is a point such that F ( z )  - F(o : )  4 6~(co) then 

F ( z -  0 . 1 8 Q ( z ) - '  VF(z))  - F(oo) ~< 0 . 9 4 ( F ( z )  - Y(oo)) .  

Hence after the Newton steps have been performed the resulting point z satisfies the 

condition 

F ( z )  - F ( w )  ~< 84/a,(w) 

as required. [] 

4. Modifying the a lgor i thm to solve the convex optimizat ion problem 

We shall briefly discuss how to modify the algorithm for the feasibility problem and 

thereby obtain an algorithm for the solution of the convex optimization problem 

rain g ( x )  

s.t. x ~ S ,  
where g ( x )  is convex. Furthermore. g is such that given a point z in the domain of g 
we can compute a vector c such that {x: g(x)~g(z)}  c_{x: CTX> CVZ}. Let x ~ 
minimize g(x) over S. We shall assume that s is contained in a ball of  radius 2 L 

centered at the origin and that tbe set {x: x ~ S, g ( x )  - g(Y ~ ~< 3/} contains a ball of 

radius 2 -L. The output of  the algorithm will be a point x* E S such that g ( x * ) -  
g ( x  ~ ~ 'y. 

The modification is as follows. The algorithm for the optimization problem proceeds 

exactly as the algorithm for the feasibility problem in Section 2 except when the current 
point z is found to be feasible in Case 1 during an iteration. Then instead of  halting, we 
compute a vector c such that { x: g(x)~< g( z)} _c { x: cTx > cTz} and use this vector in 

place of the vector that would have been returned by the oracle had z not been feasible. 

Once c is available, the remaining computations during the iteration are exactly the 

same as in the feasibility algorithm. Moreover, among all the feasible points z 

encountered thus far we maintain the one with tile lowest value of the objective function 

g(x) ;  let z" be this point. 
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The modified algorithm halts when the volume of P falls below 2 - 'L .  Suppose none 

of the points z encountered in the algorithm are feasible or if z ~ exists then it is such 

that g (z*  ) - g ( x  ~ > % Then it is easily seen that each constraint c rx > fl that is 

added to the polytope P during the course of the modified algorithm is such that 

s, g(x)  ') .< 7} {x: cTx >_. cr } ___ {x: cTx  

and so when the modified algorithm halts 

{x :  x E S ,  g ( x ) - g ( x ~  

This means that when the modified algorithm halts P contains a ball of radius 2 -L and 

this cannot happen. So z" exists and serves as the required output point x*. 

5. Variants of the algorithm 

The algorithm in Section 2 is designed to obtain the best worst case time complexity. 

But an algorithm that has the best worst case running time may not necessarily be the 

one that gives the best performance in practice. Moreover, in many cases extra 

information may be available about the oracle and the set S, and this information may be 

utilized to obtain a better algorithm. Building on the ideas in the basic algorithm we can 

construct a wide variety of algorithms for the solution of convex programming problems 

(or related feasibility problems.) This will give us the flexibility of  being able to design 

algorithms dmt suit the given problem and possibly the given computational facilities. It 
will also enable us to exploit any special structure in the set of constraints if any. 

Several variants of the basic algorithm are possible. One possibility is to cut the 
current polytope very close to the volumetric center oa during each iteration instead of  
taking shallow cuts as in the algorithm in Section 2. Another possibility is to keep on 

adding planes generated by the oracle without ever removing any plane (i.e., discard 
Case 2 from the algorithm); such an algorithm would converge in O(n2L 2) iterations 
since by Theorem 2 (Section 3, with ce = 6 / 4 m )  the value of  F( to)  would increase by 

~( l / fm-m) at each iteration, in the remainder of the section, as a sample we shall 

describe two more ways of  obtaining variants of the basic algorithm. 

The volumetric center as a weighted analytic center 

Variants of the algorithm in Section 2 can be constructed by interpreting the 
volumetric center as a weighted analytic center. The weighted analytic center 7r(w) of  

the polytope P is the point that minimizes the weighted logarithmic barrier function 

, o g b a r (  w .  x )  = - - b , )  
i = l  

over P where w,., 1 ~<i~< m, are positive weights. (w i is the weight on the plane 
aTx = b r )  "]lae gradient of the weighted logarithmic barrier is given by 

Vlogbar(w,  x) = - wi T --- 
i =  1 a t. X I b i  
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Comparing this with 

VF(x) = - b, 
i = l  

we get that the volumetric center ~o is the minimizer of  the weighted logarithmic barrier 
- Y~'i~ i o-~( w)ln(arx - bi). 

In the basic algorithm in Section 2 the volumetric center of P is used as a test point. 

The idea is to use a weighted analytic center as a test point instead of the volumetric 

center. The weights o-~(x) would guide the choice of the weights w~. One possibility is 

to use a weighted analytic center ~ ( w )  such that the weights ws satisfy the condition 

alo' i(zr(w)) <~ w i ~ a2o-i('v;(w)), 1 ~ i <~ m, where oL I, ol 2 are some constants. The key 

point is to ensure that the weighted analytic center ~ ( w )  does not lie close to a plane 

with a small weight on it. One important reason for looking for variants along these lines 

is as follows. The main computational effort in the basic algorithm (except for querying 

the oracle) is in computing the weights o-~(x); so if one can design an algorithm where it 

suffices to compute coarse approximations to the weights o-~(x) then it could lead to a 

better running time in theory a n d / o r  practice. Even better would be an algorithm that 

somehow uses these weights implicitly and does not require their explicit computation. 

Combination of determinant barrier and logarithmic barrier 

Here we consider a special convex programming problem; specifically, that of 

minimizing a convex function g ( x )  over the polytope P. We want to solve 

rain g ( x )  

s.t. x ~ P ,  

where g(x)  is a differentiable convex function. An iterative algorithm for the solution of  
this problem is as follows. During the kth iteration we choose a test point z(k) in P and 
compute a vector c(k) (by differentiating g(x)  at z(k)) such that 

{x:  g ( x ) ~ g ( z ( k ) ) }  ___{x: c(k)Vx>~c( T 

and compute a suitable /3(k) such that c(k)q'z(k) > ]3(k). Let 

k-I  c ( k ) c ( k )  T 
8 ( k ,  x ) ) = , - 1 +  E 

i = [  ( c ( k ) T d r  

where r > 0 is a suitable fixed scale factor, and let 

~,(k, ~)= ln(det( B( k, x))) - ~ ln(ayx- t~,). 
i = 1  

The test point z(k) is chosen to be the minimizer (or a good approximation to the 
minimizer) of  ~p(/,', x) over the polytope P A {x: c(j)Sx > / 3 ( j ) ,  1 ~<j-G< k -  1}. 

~/~(k, x) consists of a determinant barrier together with the logarithmic barrier for P :  the 
determinant component pushes z(k) towards decreasing values of g ( x )  and the 

logarithmic barrier keeps z(k) away from the boundaries of  P. 
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6. Linear programnfing via path of volumetric centers 

Consider the linem- programming problem 

max cTx 

S.t. x E P .  

Various known interior point algorithms for this problem follow the path of analytic 

centers to the optimum [6,7]. (The analytic center is the weighted analytic center with 

each of the weights w equal to 1.) Instead we can design an algorithm that follows the 

path of volumetric centers. The path of volumetric centers is defined by the equation 

F F ( . r ) = t c ,  t e R .  t>lO. 

It is the set of  all points in the polytope P where the gradient of F ( x )  is a non-negative 

nmltiple of  the cost vector c. Such an algorithm would start from the volumetric center 

and follow the path of volumetric centers using Newton-Raphson steps in a manner 

similar to the algorithms that follow the path of analytic centers [6,7]. 

Another possibility is to follow a path of hybrid centers. The path of hybrid centers is 

defined by 

F ' F ( x )  + r g ' l o g b a r ( e .  x)=tc ,  t ~ A .  t>lO. 

where e e IR" is the vector of all ones. and r is a fixed positive constant. Note that 
logbar(e, x) is .just the logarithmic barrier tbr P:  so the hybrid center may be thought of 

as a combination of the analytic center and the volumetric center. The author has 

obtained an algorithm that follows a path of hybrid centers (with r =  n/m) and solves 
linear programming problems in O((mn)UaL) iterations; each iteration is a Newton-  
Raphson step and involves inverting a inatrix and solving a system of linear equations. 

(Here L is a standard parameter; for a definition of  L see [7].) This improves on the 

previously best known bound of O ( ~ L )  iterations [6] when n = O(m). Details and a 

complete presentation will be given in a subsequent paper. 

7. Properties of F(x)  

In this section we shall study the flmction F(x) .  We shall first collect together some 

notation. Let P be the polytope 

P = {x:  b},  

where A ~ [R ' '~ ' ' ,  b ~  IR'" and . r~  JR". We assume that P is full dimensional and 

bounded: we will be interested only in points that lie in the interior of P, denoted 

Interior(P). Let a~ denote the ith row of A. Let H(.r)  be defined as 

I l l  

H(.u : L 
b,) 
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H(x) is the Hessian of the lo2arithmic~ barrier function E;=~ l n ( a T x - b , )  and is 
positive definite for all x in the interior of P. Let F (x )  be the function 

F ( x )  = ' 21n (de t (H(x ) ) ) ,  

where det(H(x)) denotes the determinant of H(x) ,  and let the volumetric center w be 
the point that minimizes F (x )  over the polytope P. 

For a function ~ ( x )  we let V ~ ( x )  denote the gradient of g ' ( x )  evaluated at x. and 
let g 2 ~ ( x )  denote the Hessian of g t (x)  evaluated at x. So VF(x)  (~7 2F(.:r denotes 

the gradient (Hessian) of F (x )  evaluated at x. Let 

aTH( x) 'a, 
= 1 <~ i <~ m. < ( * )  ' 

and let Q(x) be defined as 

m a i aT 

= E 
,=1 (aTx -b i )  2' 

Note that O(x)  is positive definite over the interior of P. We shall show that O(.~) is a 
good approximation to V2F(x); specifically, the quadratic forms ~ r  V2F(x)~ and 
~:-rQ(x)~ will be shown to satisfy the condition 

V~:~E~" ,  5 s ~ T O ( x ) ~ > ~  T V 2 F ( x ) ~ > ~ T Q ( x ) ~ .  

Since Q(x) is positive definite this condition implies that F(x) is a strictly convex 
function over the interior of P. 

Let /, be the largest number )t satisfying the condition that 

V ~ R " ,  ~TQ(x)~>~)t~rH(x)~. 

We shall show that 

1 >~/z(x)  >/ 1 / ( 4 . , ) .  

Let X(x, r) be the region 

~ ( x .  r )  = 3': Vi, 1 ~<i~<m, 1 - r ~ < - -  

Note that if r~< 1 then V(x, r) GP.  

a~x-b j  <~ 1 + r l .  

For a symmetric positive definite n • ,7 matrix B, we shall let E(B, x, r) denote the 
ellipsoid given by 

e ( 8 ,  x, ,.) = {y: ( y - , ) T B ( y - x )  .< r2}. 

We shall show that 

e ( O ( x ) ,  x, ( ~ ( x ) ) ' J 4 , ) _ _ _ ~ (  x, r ) .  

Lemmas I through 10 below summarize some of the properties of F(x). We shall 
prove these lemmas in Section 7.2. Lemmas I and 2 give explicit formulae for the 
gradient and the Hessian of F ( x )  respectively. 
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Lemma 1. 

,, aViH( x) - '  ~.  
a,  _ c r y ( x )  ai  

V F ( x ) : - i = , E  ( a T x _ b i )  2 a [ x - b  i i=i aT., -=b,"  

Lemma 2. Let uij = aJ(aT x -  b~) - a J ( a J x -  bj). Then 

- I  2 

1 7 2 F ( x ) : Q ( x )  +2  E ( a [ H ( x )  aj) 
l<~i<~j<~m ((IT_' " -  hi)2( a[y . , -  hi) 2 Uij[tTJ" 

Lemma 3 states that Q(x)  serves as a good approximation to 172F(x). 

Lemma 3. The matrices Q( x ) and 172F(x) satislf}" the condition 

V~:~N",  5 ~ : ' r Q ( x ) g j > ~ l  172F(x)~>~ ' rQ(?c)~- .  

Hence, 172F(x) is positive definite and F( x) is strictly convex over the interior of P. 

Lemma 4 states that the value of the quadratic form 6TQ(x)~ does not deviate too 
far from the value of the quadratic form ~TH( r)s c and gives bounds on p.(x). 

Lemma 4. 

1 
V ~ R " ,  ~ :TH(x)~>~TQ(x)~]>~ ~n /~XH(x)~ : ,  

and thus 

1 >//a,(x)  >/ 1 / ( 4 m ) .  

Lemma 5 formalizes the observation that for all x in X(2. r) the quadratic form 
~'rQ(x)~ does not deviate too far from the quadratic form ~TQ(2)~ if r is less than 

some small constant. 

Lemma 5. Suppose that r <  1 and that x ~ ~.(2, r). Then for all ~ ~ ~" 

and 

( l  - r )  
( I + r )  "S ~TQ(2)  ~ ~< .~ 1Q(x )  .~ ~< 

(1 + r )  2 

(1 - r )  ~ 
- - / ' r Q ( 2 ) . ~  

(1 - I )  4 1 + r )  4 

I _ , . ) 4  (I 

Consider the equation irF(x)  = tw where t is a scalar and w is a fixed n-dimen- 
sional vector. This equation implicitly defines x as a function of t and Lemma 6 
summarizes some of the properties of this implicitly defined function that can be derived 

from the implicit function theorem [1,2]. 
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L e m m a  6, Let @( x, t) = V F( x)  - rw where t ~ ~ and w is a f ixed vector in ~".  Then 

the equation @( x, t ) =  0 implicitly defines x as a fitnction o f  t, and we may write 

x = x(t) .  Moreover, x ( t )  is an analytic function o f  t, and d x ( t ) / d  t, the derivative o f  

x( t )  w.r.t, t evaluated at t, may be written as 

d x ( t )  _ V 2 F ( x ) - ' w ,  
dt 

and (f O < t l < t 2 then 

dt x(x(,2))- F(x(t,)) f':twTo( X ) -  I W dt. 
" f l  11 

Consider the trajectory V F ( x )  = tw, where t ~ [~ and w is fixed, that passes through 

~.. Lemma 7 gives an upper bound on the derivative of ln(aTx(t)  - b i) w.r.t, t for the 
portion of this trajectory in ~'(.t, r )  in terms of quantities evaluated at 2. Lemma 8 
gives a lower bound on how much t must change before the trajectory reaches the 

boundary of &'(.~, r). 

L e m n m  7. Let w be a f ixed vector in ~",  and let ~ be such that VF( .~ )=  ~v for  some 

scalar 7. Let t E  ~ and let x = x( t )  be a point on the trajectory V F ( x )  = tw such that 

x ~  ~'(~,  r ), r <  1. Then Jbr l <~ i <~ m, 

a ~ ( d x ( t ) / d t )  (1 + r )  3 ( w ~ O ( . ~ ) - ' w )  '/2 
~< 

(l _,.)2 

L e m m a  8. Let r < l, let w be a f ixed vector in R", and let ~ be such that V F ( ~ )  = "[w 

for some scalar "[, Let x(-t) be a point on the trajectory VF(  x)  = tw, t E ~, such that 

x('t) does not lies in the interior of" v (  ~ r). Then 

( r -  �89  - , . ) 2 (  ~( . t ) ) , / , *  

(1 -4- r )3r  ~) - ' w  

Lemma 9 gives a sufficient condition in terms of V F ( z ) T Q ( c ) - i  V F ( z )  and /z(z) 

for the point z to be in the region _,Y(w, r). 

L e m m a  9. Let 6 <~ l0 -4,  let z E P and suppose that V F( z)V Q( 7.)- i V F( z) <~ 6 ~ ( (  z ) . 

Then w ~ v ( ; ,  1.1~-) ,  /z(z) < 1.1/.z( co), and 

F(  .7.) - g (  w) ~ < 0 . 5 5 V F ( z . ) T Q ( z )  ' V F ( z ) .  

Lemma 10 states that if F ( z )  - F ( w )  is small then the quantities F (z )  - F ( w )  and 
VF( z)T Q( ~)- IVF( ~.) are closely related. 

L e m m a  10. Let 6 ~ 10 -4 and let z be a point in P such that F(~)  - F ( w )  <~ ~ (  w)  . 

Then ~ ~ ~'(w, 5V~), /z(w) ~< 1.5/~(z), and 

O.14 V F (  z)T Q( ~ ) - I V F (  ~.) <,% F( z) - F(  w)  <~ 1.4 UF(  z)V Q( z ) - I V F (  z ) .  
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7.1. Some u s @ d  claims 

In this section we shall state and prove four claims which will be used in the proofs 

of various lemmas and theorems. 

Claim 1. Let  B be an n • n symmetr ic  posi t ive  d~finite matr ix  and let E ( B ,  x ,  r)  = 

{y: (y  - x)TB( y - -  X) <~ r'-}. Let  u" be' an arbitrat>, f i x ed  vector  in ~" .  Then 

{( . m'~x . ,T(  y _  x ) )  ?- 
) '~E(B,~ .r )  

Claim 2. Let  0 > O. and let B~, B~ be n ;4 n posi t ive definite matrices.  Then 

Claim 3. 

j = l  

and o-(x)~< 1, 1 

I 
V d~. ~_ ~. " ~ T 1 ~ T -1,2 

, B I { < - G - 7 ~  B2 9 .  
t !  

a, ) 2 

m. Moreover .  w,,~,= i ~ri(.v ) = n. 

Claim 4. 

aTQ( x )  - l a  i 

and thins 

v v ' ~ ( - " )  1 v i ,<. ,,,. 

E ( o ( . , - ) ,  x .  ( ~ ( x ) )  v~ , . )  _c z (  .,-, r ) .  

Proof  of Claim 1. Let x ~ be the point that maximizes the linear function w'ly over the 

ellipsoid E(B, x. r). From the Karush Kuhn Tucker conditions [5] it follows that 

B ( x~ _ .r) = t,,'. 

where t is a scalar, and since x ~ lies on the boundary of E ( B ,  x,  r)  we can write x ~ 

as 
r 

Xvp t = V +  ~ l w  B 1 w .  

Thus 

and the claim then follows. [] 

Proof  of Claim 2. Suppose that 'q'~ ~ ff~", _~ TB I _~ > O~ rB, ~. Then 

tB~g~  1 ~ 0~-~B 2~~<1 
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Thus 

E ( B  1, O, 1) CE(B  2, O, 1 / V ~ )  

and hence for w E R", 

max {(wf  ~)2} ~< 
sc~ E(B~.O.I) 

So by Claim 1, 

1 
wTB~-IW~< ~wTB21w.  

Claim 2 then follows. [] 

max {(wV 6)2}. 
~_~E(B2,0,1/%/O) 

P r o o f  o f  C l a i m  3. Note that H(x)- 

H(x) '=H(x)-IH(x)H(x) - '=  

Thus we may write o)(x)  as 

may be written as 

Y[ H( x)-'ayaTH( x) 

~ : ,  ( 4.,- - b~)~ 

( 4 x -  b,) 2 ~=, (.~x- ~:)~(aT,-- ~,~)2. 
Then o-i(x)~<1 is seen as follows. First note that the ellipsoid 

contained in the polytope P. So, by Claim 1, 

a, ma~ a~( , , -  .,-))= 
),'c E(H( x).x A) 

Finally, 

aiC!irl k A-) 
or,(x) = trace ~ = n, 

i=l i=l ( a T :  " -  hi)" 

since H(x)-1/2H(x)H(x)-1/2 is the identity. [] 

- I  

E(H(x). x, 1) is 

P r o o f  of  Claim 4. From the definition of /x(x) and Claim 2 it follows that 

1 aTQ( x) -1 el i a, ~ - - -~va~H(. , - )  ' 
txt .r) 

and thus 

a i 1 aTH(x )  ' ai o-,(x) 

( ( l "Tx- -b i ) "  ]&().') (aTx_bi )  2 /x (x)  

Note that if B may be written as 
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where /? is a symmetric positive semi-definite nmtrix then 

wTB-Iw<~ 1. 

This is seen as follows. 

w T B  - I w = w T B  - IBB-  1 w = w T B  - I ~ B -  L w + ( w T B  - IW)2 

and hence 

wTB I W ( l  -- w T B - l w )  = wTB - l/~B-I w~> O. 

So wTB - IW ~< 1. Since Q(x)  may be expressed as 

aid  [ 
O(x)  = Q(x)  + cr , (x )  (~h_b,)  -~" 

where Q(x)  is positive semi-definite we can conclude that 

~<1. 

1 cr , . (a)} 
~< n-iin cri(x) ' ~-(.v) 

a;rQ( x)  - '  a i 
o-,( .,9 

(d-,- b,)" 
It then follows that 

~To(x )  ',,, 
3 (~x-t , , )-  

and hence 

a T Q ( x ) - l a i  1 
~< 

( a T . , - b , )  ~ fT-") 

By Claim 2 we get that 

max { (aT(  .V -- X) )  2 } = r 2~/'/x(x) a ~ O ( x )  ' a,. .~-<r2(aTx--b,) 2. 
>'~E(Q( ~].x.lg.( v)Y'4, ) 

Thus if y e e ( O ( x ) , x , ( t x ( x ) ) r / 4 r ) ,  then j a m ( y - - x ) / ( a T x - - b , ) j ~ r  and y E  
~ ( x ,  r). [] 

7.2. P r o @  of Lemmas ] to 10 

In this section we shall prove Lemmas 1 through 10 introduced in Section 7. 

P roof  of  L e m m a  1. To prove the lemma it will suffice to show that for all directions 

~( .~ + r~ ) - F(x) 
lira 
t - ,0  t' 

For small t, we have that 

1 

(a [ (  ., + t~ ) - b,)'-" 

" d.~ 

i=] 

1 

(dx- b,) e 

2 ,,,7, _~ 
(dx_ b,)~ + o(,-'). 
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Let A = / 4 ( x  + t# )  -- H(x ) .  For small t, we may write A as 

"E= , a,<,T ate. + o( t~), 
T i - -  2 " - -  A = - - 2 t  ( a i x - b s )  aTx--b, 

and H ( x  + ts r may be written as 

Thus 

(7.1)  

H(x+tEj) = H ( x )  +A=H(x)I/2(I+H(x)-i/2AH(x) l/2)H(x)l/2. 

F(  x + t~: ) = �89 H(  x + t~: ) ) )  

= F ( x )  4- -~ln(det(l + H ( J )  - l / 2 / i / e l l (A )  - ' / 2 ) ) .  (7.2) 

Let e t . . . . .  e,, be the eigenvalues of  H( x ) -  t f2AH ( x)- 112. Then I e / I  = O(r),  1 ~ j ~< n. 

Moreover, the eigenvalues of l + H ( x ) -  1/2AH(x)  -~/2 are 1 + a- I . . . . .  1 + G ,  and 

ln(de t ( I  + H(.v)-t /2gI-l(x)-I/~-))= L ln(1 + ej) 
j= l  

= ~2 ~ + o ( t  2) 
j = l  

= t r a c e ( H ( x ) - i / 2 A H ( x ) - ' / 2 )  + O(t21. 

(7.3)  

From (7.1) we get that 

t r ace (H(  x ) -  112-4H(x) -1/2) 

" n ( x ) - ' / ~ - a , a t n ( x )  - ' / 2  < ' k  
= trace - 2 t,,~__,.==i ( a J x -  b,) 2 aTx - bb" + O( t 2 

2t~] a~n(;<l- 'a,  ay~ 
= _ _ _  + o ( t  2 )  

,=, ( a t x - b , )  2 ~Tx-b, 

" aT~ + o(t 2). 

Thus from (7.2) and (7,3) we get that 

F(x+t~) = F ( x )  + /  t~ace(n(.v)-,/2jH(x)-,/2) + o ( t 2 )  

~_,lO'i(X) aTx_bi + O ( t  2) ( b y 7 . 4 ) .  = F ( x ) - t , . =  - -  

f (  x + tr ) - F(x) ~ <,fa 
lira = - o-i(x) aT x _ bi [] 
t - ~ O  f i= I 

Thus 

(7.4)  
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Proof of Lemma 2. From Lemma 1 it follows that 

a a 
- - - - F ( x )  
8x t 3x k 

[ ~ ( , T . ( . , - ) '  8 ( " ' * )  
L i= l  'Ox, (aJ.r _ b,) ~ 

= 3 ~ aTH(x) - 'a  i aikail 

,=, (4_,--~,) -~ (~,T.,--b,) ~ 

+ aik O aTH( x)_,a d ( ~ q . , . _ b , )  ~ 0.u 

#'~1 a,, ~ aTH( x)-'  
,: (aT.,._~,) ~ o.,-, ~' 

(7.s) 

We shall show that 

l 2 • , (,:: '(-,) ,,D 
~-"' ~ ,  (aT-"- b,): 

ajl 

ail-x h i  

From (7.5) and (7.6) and the definition of {r,(x) we get that 

8 0 & a ika i /  
F(x) 3 22 o-,(x) a.,, a.~~ ,=, ( a L , -  ~,,)2 

t n  n l  ~ l 2 

- 2 E E ("~'(~)  ~,) 
and thus 

(7.6) 

a i ka j l  

m 

V2F( x) = 3 ~ o-i( x) aiaT 

,~ ,  ( & < - b , )  2 

I m T - - 2 ~  ~2 (aT"(  x ) -  c'j)2 aiaj 
i=1 j=l (a~ix-bt)2(all/x-bj) 2 (aTx--bi)(aT.r--bd) " 

By Claim 3, 

#?l ~,(-,,): E (~r'(-")-'~'D2 
~,)-((~jx-,,y 

and so we may rewrite F" 2F(x) as 

m 

v ~F(x) = E (~,(.u a"~'T 
i ~ l  ( a T x - - b i )  2 

m - I 2 

- b , ) - ( ,~ -  bh 
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aia, ~ 

• (a~.,._ ~,)2 
a'4" ) 

(",wx- b , ) ( 4 ,  - t'~) 

T 

,=, (4~., - -  b,) -~ 

aj  

@~ - b,) 

el ~ a; T ) • a l i -  b, .~j.,:- bj 

Lemma 2 then follows from the definitions of Q and u~j's. 
We shall now prove (7.6). To show (7.6) it will suffice to show that all directions ~j, 

I 2 

lim = 2 

(7.7)  

Let A = H(x + t~ ) - H( x). For small t. we have that 

1 = 1 2 td;r  + o ( / )  

( 4 ( ~  + ,~)  - bj): ( + - -  b~) 2 - ( 4 x -  bj) ~ " 

and A may be written as 

J 2, 
a ja j  T. aT~ 

= _ + o ( t 2 ) ,  

and H ( x + t ~ )  i may be expressed as 

H ( x  + t ~ ) - '  = ( H ( x ) I / 2 ( I  + H ( x ) - ' 1 2  J H ( x ) - t / 2 ) H ( x ) ' 1 2 ) - '  

= H ( x ) - , / z ( I + H ( x ) - , / 2 A H ( x )  , / 2 ) - ' H ( x ) 1 / 2  

Since II m ( x ) - ~ / 2 , ~ a H ( x ) - ~ / 2  II = O ( t )  we have that 

(7.8) 

( I  + H( x ) -  '/2 AH( x ) -1 /2 ) - '  

and hence 

= l -  H ( x ) -  I/2 A H ( x ) -  l/~ + O ( t  2) 

H ( x + t ~ ) - I = H ( x ) - I - H ( x ) - ' A H ( x )  - + O( t2 ) .  
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Thus 

@ l (  x + ,~ ) - '  - .~,t.,( x ) - '  - . 9 ~ (  .,3 ' - '  ~,, . ,  = - a l l ( x )  < + o ( t : )  

= 2 ,  s (<"( ')-')2 
,=, (4x_b,) ~ 4x-b ,  

+ O ( t : )  (by 7.8). 
(7.7) then follows. [] 

Proof of Lemma 3. From Lemma 2 we get that 

T - 1  2 

~"V:F(.")~=~O(.")~ +2 Y'. C - - ~ - - - - -  2(~ . , j ) .  
- , .~, ..- ,.< ,,, (., .,- - t,,)- (4 x - b,) 

where ui. i = a i / ( a l x -  b i) - a.i/(a~.x - bi). Thus 

Also, 

~v V 2 F ( _ v ) ~ > ~ T Q ( . v ) ~ .  

( . > -  b,) -~ ( < ~ - b j  

(o>:)~ (,<y~)~- 
-<~ (.>_,,): + (4~-7,)2 

We have that 

m 

4sCTQ(x)~ = 4 Y', o-~(x) 
,= ,  ( 4 - , - b , )  ~ 

(4-~)~ 2(.~~)(.7~) 

n l  m 

= 4 E  s 

{ . > -  b,)(4x- b,) 

- i  2 (.>l.,.) .,) {a2e)2 
i = 1  j ~ l  ( Q f ) . ' - -  bi)2(aTll3. " -  bj) 2 ( a l x -  hi) 2 

- I  2 

~>4 Y'. 
, ~,<,.~,,, ( a y x -  , , , ) : ( a T -  b,) -~ 

f>2 

Then from (7.9) we 
follows from (7.10). 

(by Claim 3) 

- I  2 (.>ix) .,) Z 
, ~,<,-<,,, ( 4x -  t,,):(4,-- b,)= 

(7.9) 

(7.~o) 

(7.11) 

(a~)  2 (4~)  2 + 

( . > -  b,/ ( 4 x -  b,): 

9 

~"ui j  )- (by (7.11)). 

~ ' F ( x ) ~  5~TQ(x)~ :. Lemma 3 then may conclude that ~'r ,~ 
[] 
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Proof of Lemma 4. By the definition of Q(x) we have that 

~o(.,-)~= E <(x) ,=, (.>- ~.,): 

By Claim 3, o-i(x) ~< 1, 1 ~< i ~< m, and hence 

,., (aTe)' 

We shall show that 

1 
se'rQ( x)~>_- ~H/~TH(A") ~. (7.12) 

Since /z(x) is the largest number A such that V ~  ~", ~VQ(x)sr As~TH(x)(, it will 
then follow that 

1 >.>- ~ (x )  >~ l / ( 4 m ) .  

We shall next show (7.12). Let 

a i a  J t~(x) = ]g 
. , .  >_. ,/(.,,,, ( 4 x -  b , ) '  

We have that 

sCTQ( .r)~> ~ o-i(x) 
o',(x)>~ I/(2m) (aTX-- hi) 2 

> - -  l E (.L~)' 
2., .,.)_. ,/,..> (.b._ b,)' 

I 
> -~m ~ v/ t (x)  ~. (7.13) 

Moreover, 

a/,T ) ~T/q(X) ~= ~TH(X) ~-- ~:T ~ V----- 2 
( . , ~ - b , )  u,( x ) .  1/(2m) 

= ewn(x)~- eFn(.O'/'( 
%( r)< l/(2m) 

H( x)-J/2 T,,, - I /2 )  a,oint x) 

(.5.,- h,)' 

The matrix Xr l / ( 2 . o ( H ( x ) - 1 / 2 a i a T H ( x ) - l / 2 / ( a ~ x  - b,) 2) is symmetric positive 

XH(x)'/z~. (7.14) 
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semidefinite and its largest eigenvalue is bounded 

Eo-,(,)< i / (2 , , , !%(x) .  Thus from (7.14) it follows that 

\ o',(x ) < I/(2m~ 

Then from (7.13) we can conclude that 

1 
~ r Q ( x )  ~ >  - ~ m ~ r H ( . v ) ( .  [] 

Proof  of  L e m m a  5. Suppose x ~  v(2-. r). We have that 

m , . 

Hence 

~; (a~.;-b,): (ak )  -~ 
_ ,:, ( 4 ,  b , )  2 ( o ~ , ~  - ~,, " 

by its trace 

<(x)) >f �89 :,)~. 

which equals 

and hence 

> # VH(.r _~ ~ ~q-H( .r)~ 

# ' r H ( ~ )  s c seTH(.#) 

(1 + r ) 2  ~ < ~ : T H ( v ) ~ <  ( l _ r ) 2  " 

So from Claim 2 we may conclude that 

(l +,')2aTH(2) - ~ - 1  ' a i "  a,>~aVH(x) a , > ( 1 - , ' ) - a V H ( 2 )  ' 

Then noting that cri(x) = a T H ( x ) - l a i / ( a l x  - bi )2 it follows that for 1 ~< i ~< m, 

( 1 - t )  2 

(1 + r )  2 % ( 2 )  ~ % ( x )  ~ - -  

(1 + r )  2 

(1 - r )  2 o r / ( 2 ) ,  

(7.15) 

and hence 

(7.16) 

( l - r )  2 c r i ( x  ) ( a r 2 - b , )  2 
- - <  
( t  + r ) 4  o, . (2)  ( a ~ x - t , , )  2 

(1 + ,-)~ 
4 - -  

( 1 -  r) ~" 
(7.17) 
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We can write ~YQ(x)~ as 

( ~ ) :  
~:TQ(x)~= ~ O-i(X) 

,=, (oT-, b,): 

,,, ~,(.~.)(o~2: b,): (4~): 
O'/(2:) 

,~ <(.~)((& b,.): 
and thus from (7.17) we can conclude that for all ~: E N", 

( 1 - r  ~T (1 + 2 
-)4~TQ( 2)~<. Q( x)~<<. -- ~TQ( 2:)~_. 

( l + r  (1 " - 

From (7.18) and (7.15) it follows that 

1 - r) 2 
V ~  ~",  ~:TQ(.r) s~ ~> - - - - s o  TQ(2:) ~ 

1 + r) 4 

1 - , - ) : ~ ( . ~ )  

(1 + r )  ~ 

1 - ,-)%,(_~) 
>7 ~TH(x)  ~:. 

( l + r )  4 
Thus 

( 1 -  r)4~(2:) 

(1 + r )  ~ 

From (7.18) and (7.15) it also follows that 

(1 __/.)4 
V~-e ~ ~TQ(2:)~>~ ~:TQ(x) ~ 

(1 +,-): 

~(x)(l-,-)~ 
>/ 

(1 +r) 2 

~(~)(1 - r )~  
> 

(1 + r )  4 
Thus 

~TH(x)~ 

(7.18) 

(by def. of p,(2:)) 

(by def. o f / x ( x ) )  

~ ( x ) ( l  - r )  ~ 
~(2:)  >/ [] 

(1 +,.)4 
Proof of Lemma 6. Note that from the strict convexity of F(x)  it follows that for each 
value of t there is a unique x which satisfies ~ (x ,  t) = 0. Let cI~.i(x, t) denote the jth 
coordinate function of qb(x, t). Note that 

a~H( x )  lai 
%( x ,  t )  = 

(All 

,=, ( 4 . , -  b,): ~,L,- b, "~ 
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@/x ,  t) is an analytic function which is easily seen as follows. First, note that the sum 
of two analytic functions is analytic, the product of two analytic functions is analytic, 

and the ratio of  two analytic functions is analytic provided the denominator function is 

different from zero at each point in the domain of  interest. Also, note that each of the 

functions aTx - b~, 1 ~< i 4%< m is analytic. It then follows that each entry of the matrix 

H(x)  = 2~7'= ~(a~aT/(aSx - bi) 2) is an analytic function in the interior of  the polytope 

P. Moreover, since the determinant of H ( x )  is different from zero at each point in the 

interior of P, each element of H ( x )  ~ is also analytic in the interior of P. We can then 

conclude that the coordinate functions ~b,(x, t) are ,analytic in the interior of P. Then 

from the implicit function theorem [1,2] we can conclude that the equation O(x ,  t) = 0 

implicitly defines x as a function of t, and that the function x( t ) :  [~ -+ Interior(P) is an 

analytic function of t. Then using the chain rule for differentiation gives 

d x ( t )  
x(O, ,) + t ) -  - 0 ,  

dt  

where q~, is computed with x held fixed and @, is computed with t held fixed. 
Observing that @~(x(t), t) = - w  and q~,(x(t) t ) =  V ZF(x) we get that 

d x ( t )  
- w +  V 2 F ( x ) - -  - O ,  

dt  

and since 'i7 2F(x)  is nonsingular 

dx(t) 
dt 

- ~ 2 F ( x )  - l  

We can write 

d t )  
F( x( t2)  ) - F(  x( t, )) = f':WF( 

q dt 

= f '%r V2F(x)-Iw dt 
l L 

From Lemma 3 and Claim 2 we get that 

~ w r Q ( x )  ' w < - % w T V 2 F ( x ) - t w ~ < w f Q ( x )  - I  

and since 0 <~ t~ ~ t 2, for t~ ~< t ~< t 2 we have that 

{twTQ( x ) - t  - w. w < ~ t w f V 2 F ( x )  I . w ~< /wTQ( .~.')-' 

Hence 

- w d t<~F(x ( t2 )  ) -  F ( x ( t , )  )<~ t2twTQ( x ) - ' w  dt. f [] 
t I 
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Proof  of  L e m m a  7. We have that 

2 - 1  2 

aT x - b i ( aT x - b, )2 ( by Lemma 6) 

(a T V 2 F ( x ) - ' a , ) ( w  v V 2 F ( x ) - ' w )  
<~ 

(4x- 
since uVv ~< u 112 II v 112. 

By Lemma 3 and Claim 2, 

V ~ E ~ " ,  ~T ~ r 2 F ( x ) - I ~ < ~ T Q ( x )  - ~. 

T h u s  

aT(dx(  t ) / d t )  

aTx - b i 

By Claim 4, 

aTQ (x )  'a, 

and hence 

( , : e (  x ) - '  - ' w) 

( a T x - b i )  2 

( aT(dx( t ) /d t )  2 w T Q ( x ) -  Lw 

aTx-  b, ~ yr.(x) 

Since x E ~ (~ ,  r), from Lemma 5 and Claim 2 we get that 

(1 + r)  4 w~rQ(-~) , 
w V Q ( x ) - l w  ~< m - w 

(I - < ) "  

and that 

Thus 

I (1 + r )  2 

aTi (dx ( t ) /d t )  12 (1 + r )  6 wTQ( ~ ) - ' w  

aT x - b i J <~ ~ [] (1 - r )  ~ ( , ~ )  

Proof  of  L e m m a  8. Let x( t*)  be the first point on the boundary of ~ ( 2 .  r) as we 

move from 2 to xO) on the trajectory VF(x)  = tw. (x( t  ~ ) exists since by Lemma 6 the 
trajectory is continuous.) Note that all points on the trajectory between ~ and x(t  ~ ) lie 

in E(.L r). There exists an index j, l~<j~< m such that]aV2(x(t") - ~)/(aVj_~ - bj)[ 
= r. Hence 

~,~.~(,~ ) - b) 
I 2 In >Jr- 5-r . 

a~.~-  bj 
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We have that 

(a~x(t~)-bj) a~(dx(Q/dt) dr 
In aS-~.-- ~ = f,'- " a;ra-  b., ' 

and hence 

( ) , 
c [ , x - b j  d >~r T1. 2. 

By Lemma 7. for all x ~  v(.~, r), 

a:(dx(t)/dt) 
a~.), -- bj 

( 1 - t - r )  3 ( w W O ( 2 ) - ' w )  '/2 

(i - 1.) e ( ..( .v-))'/' 

and hence 

/7 aJ(dx(t)/dt) dt (1 +r) ;  (,,'TO(~) iw)lf~ 

Thus from (7.19) it follows that 

(1 +I') 3 ( w T Q ( ~ . ) - I w )  I /2" 

Lemma 8 then follow from the observation that 1~'- ?[ ~> I ~ -  t* I. [] 

(7.19) 

P roof  of L e m m a  9. Let r =  1.Iv@. Suppose that the w ~ X ( z ,  1.), Let w =  VF(z). 
Note that both z and co lie on the trajectory VF(x) = m,, t ~ JR. Thus applying Lemma 
8 with ,~-- z, ] =  1, x())  = w and } = 0 we get that 

( r _  ~,.2)(1 _ r)2( ~ (  z ) ) , / 4  
1>~ 

(1 + 1./:{,:o( z)-',,, 

and noting that w =  V F ( z )  and 1 =  I . l v ~  ~ 0.011, we get that 

VF(z)rQ(z)-'VF(z) >~ 1.02f~7 Z ) > 6~(Z). 
By assumption, this cannot happen. So w ~ X(  z, r). 

Next, we shall show that 

F ( z )  - F (co)  ~ 0 .55VF(z )VQ(  z ) - ' V F ( z ) .  

From Lemma 5 and Claim 2, we have that for x E E( z, t-), 

, (1 + r ) "  wfQ(x) w <~ w V Q ( z ) - '  - -  W .  

(1 _1.)2 
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Thus we have that 

F( z) - F( 60) ~< 

~< 0.55 V F ( z ) T Q ( z ) - ' V F ( z ) ,  

Finally, since 60 ~ X(z, r), from Lemma 5 we get that 

(1 + r )  ~ 

u ( z )  ~ ( 1 - r )  - - - - - - a ~ ( 6 0 )  

~< 1.1/*(60), since r ~< 0.011. 

That concludes the proof of the Lemma. [] 

01twTQ(x)-lw dt (by Lemma6)  

i ( l  + r) 4 
~< fo t wrQ(z ) -Lw dt 

(1 --r)  ~ 

- (~ +-r)~ ' , " O ( ~ - I - ' w  
2(1 _,.)2 

(1 + r )  4 ~ r 

- ~ ( ( 1 - ~  2 F(Z) Q ( z ) - ' V F ( z )  

since r =  1.1f6 ~< O.O11. 

Proof  of Lemma 10. Let r =  5~/6. We shall first show that z~X(60,  r). Suppose 
zf~X(60, r). Let w =  VF(z). Note that the trajectory VF(x)=m, ,  t ~ ,  passes 
through both z and 60. Let xO) be the first point on the boundary of X(60, r) as we 
move on the trajectory VF(x)= tw from 60 to z. Note that VF(x(? ) )=  }w, and that 
Vt, 0 <~ t ~ -t, x(t) ~ ~(60, r). We can then apply Lemma 8 with 2 = 60 and ~= 0 and 
conclude that 

7/> 
( r -  �89 - r ) 2 ( ~ ( e o ) )  '/4 

(1 + r)3~/wTO(60)-' w 

mid hence 

- 2 T - I  
( t )  w Q ( 6 o )  

(r-- r --,)~ 

">~ (1 +,.)~, /~-(60) " 

By Lemma 6, 

F ( x ( ) ) )  F(60) >~ _~f0?twrQ(x) ' - w dt. 

From Lemma 5 and Claim 2 we get that for all x ~ -Y(60, r) 

wTQ(x)-lw>7 ( l - - r )  4wTQ(60)_,w 
(1 + r )  2 

(7.20) 
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and hence 

(1 r )  4 w ] Q ( w )  - '  
- -  M? f 0  ! F ( x ( } ) )  F(~o) >~ 5(1 + r )  2 t d t .  

4 - 2 ( l - , - )  (t)  
>7 wTQ(w)  ' - I I '  

lo(1 + ,-)~ 

~)-~ ( l - - r ) ~ ' ( ,  - ~ , '~  : 

> lO(1 + ,.)s v~( ~o). 

Then noting that r = 5v@- ~< 0.05,  we  get that 

(by (7 .20 ) ) .  

(1 ? ) 4 w V Q ( z ) - I w  (1 + ? )4wrQ(  z ) -  ' 
~< w r O ( x ) - ' w ~ <  (7.24) 

(1 + ~): (l - ~)2 

From Lemma 6, 

~ f01 twrQ(x)  t foltWVQ(x) - dt - - w dt  ~< F(  z) - F( w) ~< tw 

and hence from (7.24) it follows that 

(1 r )  4wrQ(z.)  - '  w I (1 + ?) 'w ' rQ(z )  ' 
- fo Wfo~ tdr .  5 ( 1 + ? )  2 t d t < ~ F ( z . ) - F ( o o )  <~ ( 1 _ ? ) 2  

(7.23) then follows by carrying out the integration, and noting that ? = r/(1 - r )  and 
r = 5 ~  >~ 0.05. Furthermore, since zE~(w,  r), by Lemma 5 we get that 

( l + , . ) ~  (~1 
~(~o) ~ ( l - - r )  ~ 

1.5/x(z) .  since r~< 0.05. 

That concludes the proof  of  the Lemma. [] 

F ( x ( } ) )  - F (co)  >7 1.01 6r  . (7.21) 

On the other hand since F ( x )  increases monotonically on the trajectory V F ( x ) =  tw 
from w to :.. we have that 

F ( x ( ~ ' ) )  - F( ,o) ~ F ( z )  - F ( w )  ~ ~,%( w) . (7.22) 

But (7.21) and (7.22) cannot be simultaneously true. So :. must be in X(w,  r). 
We shall now show that 

0.14 VF(  z)r  Q( z ) - ' V ' F (  z) <~ Y( z) - / : ( w )  ~< 1.4 VF(  z)-r Q( z ) - ' V F (  z).  

(7.23) 

Since zc_Y(co, r). it follows that o ) e X ( : . , r / ( l - r ) ) .  Let ? = r / (1 - r ) .  So from Lemma 5 
and Claim 2, we can conclude that for all xeX(z .  7). 
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8. Proofs of theorems 

In this section we shall prove Theorems 1.2 and 3 introduced in Section 3. But first 
we shall collect together some notation. Recall that P is the polytope P = {x: Ax > b}, 
where A e IR ' ' •  b e [R ", and . r e  JR". Also, note that aT denotes the ih row of A. 

ln(det(H(x))),  and the volumetric center w H(x)  = 57:',=, (aiaV;/(aTix - -  bi)2), F ( x )  = ~- 
is the point that minimizes F ( x )  over the polytope P. Moreover. cry(x)= 
a~H( x ) - '  a J ( a ] x -  b y ,  14  i V  m, Q ( x ) - Y ~ 7 * = , ( o ; ( x ) a ; a l / ( a ~ x - b ; ) 2 ) ,  and /.,(x) 

is the largest number A such that Vs ~ ~ N". ~ rQ( x)~ > A~TH(x)~.  
Similarly, /7 is the polytope P = {x: s b} where , 4 ~  I~ '~'x" and l) ~ [R';'. Note 

that a, r denotes the ith row of A, , q ( x ) =  E';L,(a, aJ/(aV, x-[,,F), ~(x) 
ln(det(/q(x))), and the volumentric center & is the point that minimizes kZ(x) over =~_ 

/r Fur thermore ,  f f ; (x)  = a ,T/- ,7(x)- 'a , / (a ,Tx - ~ , )2  I v i v rfi, Q ( x )  = 

gq' . ( a i ( x ) a , . f f l / ( a T x - g ; )  2) and /2(x) is the largest number a such that VscE 
~", ~r0(x)s~ >~ ,~a Y;q(x)s~. 

Remark. Note that as long as the polytope /7 is full dimensional and bounded Lemmas 
1 through 10 in Section 7 are valid with the relevant symbols without tilde replaced by 
the corresponding symbols with tilde, e.g., with P replaced by fi: H(x) ,  Q(x)  replaced 
by / t (x ) ,  Q(x);  m replaced by tTz etc. 

Instead of proving Theorem 3 we shall prove Theorem 4 below and Theorem 3 will 
follow from Theorem 4 by interchanging the roles of the tilded and the untilded 
quantities (i.e., by interchanging /7 and P, A and A, etc.) 

Theorem 4. Let A = ( A  c) T, b = ( b  f i ) f  and / 7 = P A { x :  cTx>[3}. Let z r  let 
a V fiV 10 -4, and let k~(z ) -  k~(~u ') V a 2/5,(~5). Suppose t h a t  c T [ ~ t ( Z ) - I C / / ( c T z  - ]3) 2 

V rain{ c~, /5,( z)}. Then the polytope P is bounded, 

and 

f (co)  - F(o~) v 5~. 

In addition to the lemmas ,n Section 7 and the claims in Section 7.1, the proofs of the 
theorems make use of Lemmas 1 1-14 stated below. Lemmas 11-14 will be proved in 
Section 8.1. 

Lemma 11. L e t , 4 = ( A  c) T b = ( b / 3 )  T, / 7 = P C ) { x :  cTx>~B}, and let z,r Then 

cTfi( : ) - ' c  

( c N  - 

(cN - #)2 
(b) c~fi(r 'c = (cTH( z)-  'c) 



3 2 4  P.M. Vaidya /Mathematical Programming 73 (1996) 291-341 

(c) For 1 <~ i <~ m, 

O ' i ( ~ ' )  - -  ( [~ i (U. . )  : 

(d) For 1 ~<i~<m, 

(e )  

L e m m a  12. Let f , = ( A  c) r. b = ( b  /3)T 

O-i( z ) )a i / (a ) r  z -- bi). Then 

;FO(z)-lu < 
(cT:  _ ;3 )~ 

(a,~H( z)-' e) ~ 
I T )2 

o r H ( = ) - ' c )  
o-,.(~) I ~< ~;( : )  ~< o-;(=) 

I ~ ( z ) - F ( z )  = ~ l n  1 + ( c . r z ~ T i g  = - 

and let z r  fi. 

1 ( c'r/~( = ) -  t c ) 
~-ln I - - - - - -  

(cTz--~)~"  " 

Let u = E'~L 1( 6"i( z) - 

Lemma 13. Let ,4 = ( A c) T, b = (b /3 )m and let z ~ ft. Suppose that cT H( z) - t C/ (cTz  
-- /3) 2 ~ r <  1. Then 

and Jbr all ~ ~ [~ ,  

1 1 
~ r O ( z ) - I ~ < ~ r O ( z ) - ' ~ <  ~ ~ C Q ( z ) - I ~ ,  

(1 + ~- : /~(z))  1 - T 

L e m m a  14. Let z ~ P and let 6 <~ 10-".  Suppose that A has linearly independent 
columns and that V F( z)TQ(z) IV F( z) <~ 6 ~ (  z ) . Then the polytope P is bounded. 

It is worth noting that as long as A has linearly independent columns the required 
inverses in Lemmas 11, 12 and 13 exist and the lemnlas remain valid; the boundedness 

of P (or if) is not required for their validity. We shall now prove Theorems 1, 2 and 4. 

P roof  of  Theorem 1. Let y = z - tv/ where r E [~. Define Area , 

If F ( z ) - F ( c o )  ~<&/~co)  then A ..... = 0 . 2 e l s e  A ..... = 

We shall show that 

Vt, 0 ~< t~< Am~ ~, 
d F ( y ( t ) )  

dt  
- (1 - 5.3t)  UF(  z)T~, 

as follows. 

o.2a~/2~( z)'/4 
x T  ,~1/2  " 

( V F (  z) "q) 

(8.i) 
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where dF(y( t ) ) /dt  is the derivative of F(y(t)) w.r.t, t evaluated at t. Before proving 
(8.1) we shall complete the proof of the theorem using (8.1). From (8.1) it follows that 

F ( z ) - F ( z ' )  = F ( z ) - F ( z , - A r / )  

= - f 0  AdF(y(tlldt dt 

>1 VF( z)Trlf0~(1 -- 5.3t) dt 

= (A - 2.65A 2) VF(z)T:q. (8.2) 

There are two cases depending on the value of F ( z ) -  F(w). Suppose that F ( z ) -  
F(w) ~< 6 ~ ( ~ .  Then by Lemma 10 and the definition of r/ it follows that 

1.4 VF(z)Tr/>i F ( z )  - F(o9).  

So by (8.2) and noting that in this case A = r we may conclude that 

F ( z )  - F ( z ' )  >i ( r -  2.65r 2) VF( z)rrl  

r -  2.65r 2 
>1 ( F ( z )  - F ( w ) )  

1.4 

/> (0.71 r -  1 . 9 r 2 ) ( F ( z )  - g ( w ) ) .  

Thus if F(z) - F(w) <~ 6 ~ (  o9) then 

F ( z ' )  - F(og) ~< (1 - 0.71r + 1.9r 2 ) ( F ( z )  - F(og)) .  

Next, suppose that F( z ) -  F( og) > 6 f ~ o 9 )  . By Lemma 9 and the definition of "1/ it 
follows that 

VF( z)Vr/~< 677~ z) = F ( z )  - F(o9) ~< 0.558~//x(z) ~< 0.61 8 f ~  o9) . 

So in this case 

Note that in this case A = r6 t/%(zy/a/(VF(z)T~7)l/2 So from (8.2) we get that 

F ( z ) - F ( z ' ) > i ( A - e . 6 5 A  2 ) V F ( z )  1~7 

r6 1/2/x(Z) ' / '(  VF(z)Trl) ,/2 _ 2.65r 2 6 ~  z) 

>/ ( r -  2.65r 2) B ~ z )  

( r -  2.65r2) 8 

>~ 2 v ~  ' 

Thus if F(Z) - F(w) > 3f -~z)  then 

( r -  2.65r2) 6 
F( z) - F( z') /> 

That completes the proof of Theorem 1. 

1 
since /~(z) >/ by Lemma 4. 

4m 
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We shall now prove (8.1). We shall restrict ourselves to values of  t in the range 0 to 
Am, x. TO show (8.1) we shall require an upper bound on d2F(y(t))/dt 2, the second 
derivative of F(y(t)) w.r.t, t evaluated at t. We have that 

d2F( y( t ) )  
d? -~TV2F(Y(O)~" 

By Lemma 3, 

nT V2F( y( t ) ) ~  5~*O( Y( O)~ 
and hence 

d 2 y ( y ( t ) )  
<~ 5rlfQ( y(t))'O. (8.3)  

dt  2 

We shall show that 

y ( t )  E X(Z,  0 . 6 8 ' / 2 ) .  (8 .4)  

From (8.4) and Lemma 5 we get that 

(1 + 0.6a 1/2) 2 
r/TQ( .Y(t)) r /~ - - - - ~ 4  r]TQ( S)'r/ 

(I  0 .68 ~'- ) 

~< 1.06r/mQ( Z)V/ 

~< 1.06 VF( Z)Trl 

So from (8.3) we can conclude that 

d2F( y ( t ) )  
~< 5.3 VF(  z)Tr/. 

dt 2 

We can write 

, d 2 F ( y ( t ) )  dF(y ( t ) )  _ d F ( y ( 0 ) )  + C  

Jo dt 
dr dt dr 2 

- vF(z)vw + s vF(z)'~ dt 

= - (1 -- 5 .3t)  VF( Z)Vr/. 

(since 8~< 10 -4 ) 

(by def. of r/) .  

(8.2) then follows. 
We shall now show (8.4). We have that 

( y ( t )  - z ) T Q ( z ) ( y ( t )  - Z) = t2r/fQ( z)r /  

Thus 

m _ 2 (y(t) z)lQ(z)(y(0 ~)~a  ..... VF(~)T,. (8.5) 
There are two cases depending on the value of F ( z ) - F ( w ) .  Suppose that F ( z ) -  
F(o))  ~< 6 ~ / ~ w )  . By Lemma 10 and the definition of r/ we get that 

1 

VF( z)Wr/~< - ~ - ~ (  F ( Z )  - F ( w ) )  ~< 7 . 2 8 ~ w )  
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and that 

~,(co) ,< 1 .5~(z ) .  

It then follows that 

VF(  z)TT] ~ 7.2 ( ~ ( . O )  ~ 9 3 ~ .  

Then by (8.5) and noting that in this case Am~ ~ = 0.2 we get that 

( y( t) - z ) T Q ( z ) ( y ( t )  -- Z) ~ 0 . 3 6 6 f ~  Z) �9 

Next, suppose that F ( z ) - F ( w ) >  6 ~ ( ( w ) .  In this case 
( tz( z))I /4/(VF(z)Tr/)  t/2. Hence 

A2m~,VF( z)Vr/= 0.048~/p.(z) ~< 0 .366~/~(z) ,  

and so by (8.5), 

( y( t) -- z)T Q( z ) (  y( t) - Z) ~< 0.368~-~ Z) . 

Thus in both the cases y(t)  ~ E(Q(z) ,  z, 0.66]/2(/x(z))  V4) where 

E(Q(  

By Claim 4, 

E(O( z), z, O( ~( z))'/4)~_Z( z, O) 

and hence y(t) ~ X(z, 0.63 i/2). This proves (8.4). [] 

327 

Am~ x = 0.26 t/2 X 

Proof  of Theorem 2. We shall show below that 

VF( z)T(~(Z) - ' V,ff(Z) ~< 0.6( 6a ),/2 ~< 0.66 6 ~ ( z )  �9 (8.6) 

Before proving (8.6) we shall complete the proof of the theorem using (8.6). By (8.6) 
and Lemma 9 we get that 

# ( z )  - # ( ; , )  ,< 0 . 5 5 V # ( z ) T Q ( z ) - ' V F ( z )  

and that 

~ ( z )  ~ 1 . 1 ~ ( , ~ ) .  

So from (8.6) it follows that 

i f ( z )  - kv(&) ~< 0.33( 6a, ),,/2 ~< 0.43 &/~-(g~) . (8.7) 

From Lemma l l(e), we have that 

cTH( -t  L Z) c 
f ( z )  - F ( z )  = �89 1 + ~ ~ , / 2  , ( 8 . 8 )  

(cTz - p)- '  - ~ .  
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Then from (8.7) and (8.8) we may conclude that 

/7(E~) - F (o ) )  = ( / 7 ( z )  - F ( z ) )  + ( r ( z )  - F ( t o ) )  + ( E ( & )  _ / 7 ( z ) )  

> ( / 7 ( z )  - F ( z ) )  + ( /7 (E j )  - F ( z ) ) ,  since F ( z )  - F ( o ) )  > 0 

I i/2 , 0.33(6oe) I/-" >~ ~o~ - -  g ~  - -  

>~ ~o~ ~/2 since c ~  6~< 10 4 

Theorem 2 then follows from (8.7). 

We shall now show (8.6). Note that # z = m +  1, /7 , -a~,  1 ~<i~<m, a,~,=c, b , =  

b~, I ~< i ~< m. and b,~, =/3.  By Lemma 1. 

- r # ( : . )  : s #,( : ) -  
i~, aJ~ - ~,, 

m [1 

: ~ # , ( ~ ) - -  
T 

i= l (li ~.--  

m a i 

[I]i': i =  = 1  
i 

cTU( - ) - '  c c 

-.b cT 2 ~,, (c,=_/3) 2 - V  

m a i 

- - q - b t  s ( a ' ( 2 " )  - ~  ) s _ h i i=1 

C"fi( = ) ' C  C 
+ 

(CTZ-- fl)  2 c r z - - ~  

= - V F ( z )  + u +  u ,  

where 

'.e," ~, c~fi( z ) - ' c  c 
u =  L ( < ( z ) - o - , ( : ) )  T _ _ b  ' and ~ =  

i=1 a i ' .  ( c f Z - -  / 3 )  2 c T z - -  /3 

We shall obtain an upper bound on each of  VF(z)TQ(z)-IVF(z), urQ(z)-Iu and 
uTQ(z) - lu; these bounds will lead to a bound oil VF'(z)TQ(z) IkZ(z) which in turn 

will give a bound on V/7(z)TQ(z)-lV/7(z). Since ce~<6~<10 -4 and / . , (w)~  1 we 

have t h a t  

F(. ' . )  - F ( . , )  ~ ~ ( ~ o )  ~ a ~ 7 , ,  ) . 

So by Lemma 10 we get that 

1 
VF( z)T Q( z ) - 'VF(  z) <~ ~-7~( F( z) - F( ,))) ~< 7 .2oe%(to)  

and that 

~ ( o , )  ,< 1 . 5 ~ ( z ) .  

So 

V F ( z ) T Q ( z ) - ' V F ( z )  <~ 7.2oe2/x(w) 

1 lc~2/z(z) 

~< 1183/2C~ I/2, since o~ ~< 6 and p . (z)  ~< 1. 
Thus 

F T - i ~/2c~ I/2 V (z) Q(z) VF(z) V 116- . (8.9) 
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From Lemma 12 we get that 

( c T . ( z ) - ' c )  2 
uTQ( z ) - ' I  ~ <~ 

( c T z  _ ~)~ 
[ 

Thus 

~< �88 6a) j/2, since cr~<r 

u T Q ( z ) - '  ' ,/2 . ~  = ( ~ )  ' , 

We have that 

(df i (  ~)- 'c) 2 CO( :)-~c uTQ(Z) l lY = 

( c , ~ _  r  4 (cTz_ r  2 

By Lemma 1 l(b), we get that 

d:~(z) -' c <~ cTH( Z) c. 

Furthermore, from the definition of /.z(z) and Claim 2 it follows that 

1 
cVQ(z) 'c<~ ~-~) cTH(z) 'c. 

Thus from (8.11) we can conclude that 

vTQ( Z ) - '  u <~ 

O/3/2 

Thus 

s~(z )  

<~ ~66~1/2, since a ~ 8 i t ( z ) .  

(8.10) 

(8.11) 

uTQ( z)-'u<~ ~g3c~'/2 (8.12) 

Using the relation xTy ~ ]] X ]12 ]] Y [12, we get that 

V f f ( z ) T Q ( z )  ' V f f ( z )  

= ( -  VF( z) + u +  u)VQ( z ) - ' (  - Ug( z) + u +  u) 

(8.13) 

From (8.9), (8.10), (8.12), (8.13), and the assumption that 6~< 10 -4 we can conclude 
that 

V f f ( z ) T Q ( z )  ' I 7P (Z)  ~<0.5(6c~) 1/2. (8.14) 
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By Lemma 13. (with r =  0 .5~1/2) ,  we get that 

V,F(z)rQ(z) 'VF([) 
)T ' - , (8 .15)  r f ( :  O( : ) -  v#(~).< (1_0 .5~ ,~)  

and that 

(1 + o.s~'/-')e~_(-) 
~ ~(. z) ~ ( 1 - 0 . s ~  '/~) (8.16) 

From (8.14)-(8.16) and the assumption that a ~< 10 -a, it follows that 

VF( z.)ro(:)-~r15(=) <~ 0.6( c%e ),/2 ~< 0.666r . 

That concludes the proof of (8.6). [] 

Proof of Theorem 4. By Lenmm I l(a). we get that 

v ~  R". _~"n(z)~> 1 (,.~ - -~i  -v ~T,q(.:)~. 

Then since cTIf( =)-Ic/(c:r= --/3 )2 < 1, it follows that H(g.) is nonsingular and that A 
has linearly independent columns. We shall show below that 

g)r Q( IrF( Z) IV'F( :_) ~< min{Sc~ff(::), &//.t( :,~--)-}. (8.171) 

Before proving (8.17) we shall complete the proof of the theorem using (8.17). Since A 
has linearly independent columns, from (8.17) and Lemma 14 we can conclude that the 
polytope P is bounded. Then by (8.17) and Lemma 9 we get that 

F ( Z )  - F ( ,o )  ~< 0.55 VF( z.)"O( =)-'VF(z) 
and that 

So from (8.17) we can conclude that 

F(7.) - F(oJ) ~< min{4c~/~((o), t~r }. (8.18) 
From hemma 1 l(e), we have that 

/6( c) - F( [) = - �89 1 ~ - - ~ i  ~ E 2 ( 1 - a ) "  (8.19) 

Then from (8.181) and (8.19) it follows that 

#(&) - F(, ,)  = 

~< 

~< 

.<54 (since ._< 10 -~, . ( . , ) . <  1). 

Theorem 4 then follows from (8.18). 

( F ( Z )  - F ( Z ) )  + ( F ( ; . )  - F ( ( o ) )  + (k=(6)) - / 5 ( Z ) )  

( f i (  z) - F( ;:)) + ( F ( ~ ) - F ( ( o ) )  (since F ( & ) - F ( z )  ~())  
(2 

+ 4a#(~o)  
2(1- 4) 
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Next, we shall relate /*(z.) and /3.(z), ~- Q z) -  and ~: Q - ~:; these relations 
will be useful in proving (8.17). Let r =  (1/(.1 - oe)) min{c~, /2(z))}. By Lemma l l(b), 
we have that 

c T H (  Z) - 'C ( cT z -- [3 )2 

( J: - fi ): 
chq( z) 

( d z - / 3 ) - '  - ~ q (  z ) - ' c  ( ~ T  _ /3 )~  

Thus 

) -I -I 
'(' c~H(:)  C d &  : ) - )-~ 

= l - ( d e - / 3  (~ .~ - / 3 ) :  

~< 
1 

ram{ ~ ,  ~.( z)} 
1 - c x  

<~r .  

c T H  ( Z ) - I c 

( ~ -  ~)~ ~<r. (8.20) 

Then by Lemma 13 we get that 

~'~(z) 
~ , (z)  + - -  

1--ot 

Thus 

(by clef. of r ) .  

1 - - O g  

~.(z)  .< ~ _ ~ _ T ' ' (  ~ )  
(8.21) 

Also, by Lemma 13, for all s u ~ [R" 

( 2(,_~) ) 
~< 1+ ( I_cc_.T)~.(Z) ~TO(z')-t~ 

1 - o ~ - r  

Thus 

(by 8.21) 

(by def. of r ) .  

1 - -  O' 
i - c ~ - r  

(8.22) 
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W e  shall now show ( 8 . 1 7 ) .  Note that tY~ = m + 1, ~ = a i, l <~ i <~ m ,  ae,  = c ,  b~ = 

b i, I ~ i<~ m, b,~ =/3 ,  and (Ye,(x) = cTIq (x ) - IC / ( cVx - -  /3) 2. By Lemma 1, 

,vt a i 

- VF(z) = E < ( : )  aT:- b,. 
i = 1  

a l  m 6/i 

= ,~,(:)a~/~_b. E ( ~ , ( : , )  o-,(z)) TZ_ 6 
i = 1  , i = 1  

= ,= ,E '>'( :) a ~ -  ~,, ,=, (~'(~) ~ ' ( : ) )  ~,.-~-- b, 

2 c T z  

= - ( v # { ~ )  + u +  ~), 

where 

rtl O l 

. =  E ( ~ , ( ~ ) - , ~ , ( ~ ) ) a ~ = _ b ~  and ~ :  
i = 1  

To obtain a bound on V F ( z ) T Q ( z ) - ' V F ( z )  we 
I 7 / ~ ( z ) T Q ( z ) - t V F ( g ) .  u T Q ( z )  - l u  and urQ(Z)  - !le. 

Since a ~< 6 and ~(&)~< 1 we have that 

,e(~) _ #(~,)  _< ~ ~;~( ~1 ~ ~ ) .  

So from Lemma 10 it follows that 

1 
Vk:( z ) r Q (  z ) -  ' V/7(z )  ~< ~ i - ~  ( # ( z )  - k : (&) )  ~< 7.2 cx 2/2, 

and that 

/2(a , )  < 1.5~.(r.).  

v#( z)T O( z) - ' v # ( : )  .< 7.2 ~- 'a(~)  

_< I l , , ~ ( : )  

~1~2(1 -  ,~)~(~)  
~< 

1 a - r  

c*,q( zT)-~,' " 

(c~.: _/3 )2 crz _/3 

shall upper bound 

So 

Thus 

T I 
VkZ(z Q ( z )  Vkr(z)  ~< 

~< 

(by 8.21) 

] - -  (1'  vY( :)T O( :) - ' vY(  z) 
1 - c ~ - r  

l l a e ( l  - c~):tx(Z) 

(1 - ~ , -  7) 2 

each of 

(by 8.22) 
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Then noting that e~< 8~< 10 -4.. ~-~< cx/(l - or), and p,(z)~ 1, we ~et that 

Vf f (z )  TQ( z) - 'V f f (z )  <~ 12 min {a f / z (z ) ,  6 2 , ~ } .  

From Lemma 12 we have that 

l "~ (~T.(~)- c)" 
uTQ(z) lu<~ (Cz  - ~ )4 

~< "r 2 (by 8.20) 

1 
~< ( 1 -  c~)2 min{a/2(z), 0L3/2 ~ )  

1 

~< ( 1 -  o~_ , r ) (1 -  o~)min(a/z(z), ~ . , / 2 ~ }  

Then noting that o ~  8~< 10 -4, r ~  4/(1 - or), we get that 

HTQ( Z)-I/x ~ 1.01 min{cr/x(Z), ~ 3 / 2 ~ ) .  

Next, we have that 

_1 (cT/~(Z) -1 2 c) cTQ( z ) - ' c  
uTQ( z) u = 

(cTz--~) 4 ( c T z - -  ~ )  2 " 

From the definition of /x(z) and Claim 2 it follows that 

cTQ( z)- 'C 1 cTH( z)-  C 
~ )2 

and by Lemma 1 l(b), 

cTfi( z)-~c.< cWH(z) 
Thus 

- I  
C. 

uVQ( z)-'u<~ 

(by def. of 7") 

(by 8.21). 

(8.23) 

(cTH( Z)-IC)-~ 

~( a)(c~z - /3)  ~ 

T 3 
< - -  (by 8.20) 

~(z)  -min{a/~(z), 3/2 g ( ~ }  (bvdef. o f r )  
(1 - o~)'~(z) 

(8.24) 

1 min{o~p.(z), a3/z ~(~-~} (by8.21). 

Then noting that ~ <  6~< 10 -4, -r~< ol/(1 - o~), we get that 

vrQ(z)- 'u~< 1.01 min{crtt (z) ,  6 3 / z ~ } .  (8.25) 
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Using the relation :fT.),  ~< [I X 112 II y 112 we get that 

VF( z)T Q( z ) - 'VF(  z) 

: ( v # ( ~ )  + .  + ~ ) ~ o ( : . ) - ' ( v F ( z )  + ,  + ~) 
)),~,~ ~.~ ( ( ~ . ~ ( 2 , ) . I . Q ( 2 . ) _ 1 ~ ( 2 ,  . _t_ (/ATQ(s.) ,,/)1/2 - 1 I/2"2 

+ ) .  
(8.26) 

Then from (8.23)-(8.26) and the observation that 6 ~< 10 -4, it follows that 

~'~r( :)To(Z)-IVF(Z) ~ min{5cqx(z), 6r } 

(8.17) then follows. [] 

8.1. Proofs of Lemmas I1 to 14 

In this section we shall prove Lemmas 11 to 14. 

P roof  of  Lemma 11. H(z) may be expressed as 

CC T ,v(=) =*7(:.) (oT~ _/3)~ 
,,/2( & z ) - ' r  z) - ' / '-  = *7(z) ; - 

(cTT:. __ / ~ ) 2  

Thus 

VSgE~ ", ~T*7(rC)~>/~TH(2)bC>./ ~T*7(Z)~(I 

(a) follows from (8.28). 
Next, note that *7(z)- i  may be expressed as 

H(z) - ' cc~-(:~) - '  *7(Z) l =H(z) - I - -  
( c T : . - - ~ ) 2 - { - c T H ( z )  I 6 �9 

(b) follows directly from (8.29). 

We have that for 1 ~< i ~< m, 

aTH (z) -' a; d,*7( z) - '  a; ,~;(z) - , ~ ; ( z )  - 

( ,qz  - ~,,)2 (a3:  - r,;)2 

(a : : . -  b,) 2 

From (8.29) it follows that 

aTH( z)-' aT*7( z)-' a i - -  a i = 

,7(z)  ,/2 

(aTH( ~) , )2  
2 (cT:,- ~ + c%'(z)- 'c 

'c) c r*7(z)-i7 
(cTz -/3 

(8.27) 

(8.28) 

(8.29) 
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We can then conclude that 
(~. (z)- '~)  2 

(c) follows from (8.30). 
Next, since xry  <~ II x 11-211 y 112, we have that 

(~>(~)-,~)~ (~->,(~)-,~,,)(~,-,(~),~) 
~< 

(aTe-hi) 2 (.T~-bi) 2 

= , ~ , ( z )  c~H( ~.)-' ~. 

(d) follows from (8.30) and (8.3l). 
Finally, from (8.27) we get that 

det( H(z)) = det( /4(z))  det( 

/ 

det(~( z)){1 

and thus 
/ 

- F (  z ) =  - �89 #(z) 

I -  
t?( z)- ' ' :  J &  z)- '/: 1 

(~z -/3 )~ ) 
cwrT(z) '~ 

cTq( z)-'c 1 

{8.3o) 

(8.31) 

(e) then follows from the relation between cTH(z) ~c and cTH(z) - lC  given by (b). 
[] 

Proof of Lenuna 12. By Lemma 1 l(c), we have that for 1 <~ i <~ m, 

- (aT-(~) 'c) 2 
(8.32) 

�9 - I  T <(~) o-,(~) ((c~_~)2+c~.(~) c)(a,z_~,)~ 
Next, since xTy~-~ [[ X 2 II yl12, we have that 

( a > ( z ) ' c )  2 (a>,(~)'a,)(cl , , (~)'c) 
(aTz-- ~,): ~ (aT:-- b,)-; 

= O'i( z ) c T H ( Z ) - l  C. (8.33) 

Let D be an m • m diagonal matrix such that the ith diagonal entry Dii is given by 
Oii= f ~ z )  / ( a [ z  - hi). Then Q(z)  may be written as 

Q( z) = ATD2A, 

and u may be written as 

u = ATDfi, 
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where fiv = (~il . . . . .  fi,,,) and 

~ i ( z )  - o-, .(=) 
= l < ~ i < ~ m .  

-~i 7-D7~.) 
Thus we may express uXQ(z) -I  as 

uVQ(z)  - ' u  = 77TDA(A-rD2A) - '  ATD~. 

Moreover, since II D A ( A I D 2  A ) - I A r D  ll_~ ~< 1 we get that 

Thus 

uVQ( z )  -1 u <~ -~T~ 

,,,( 
i =  

' L ( : . )  - o - i ( = )  

v%(:) 

4 T 
,:, (c"~-~)(~ ,~-bi /~ , ( : )  ( ~ - v i )  ~ 

m I T [  g.) - I ~ 
E ~ a i H  \ c ] -  (Ti(~.) cTH( ~0)--'C 

4 T __ 
i=l ( c T z - - [ ~ )  ( a i z  bi)2o'i(Z) 

(cT~ 5-~ i=1 ( a T ~ . - b i T "  

Note that 

c'H(z)-'c=c~H(zl-'H(:lH(:.t-'c= E (~;H(-:)-'c)  ~ 
i = 1  ( a T e - -  bi)  2 

So we can conclude that 

,To(z)-' (cTH( ~)-'c): u~< [] 
(cTz  _ r )4 

(by 8.32) 

(by 8.33 / 

P roof  o f  L e m m a  13. From (a) and (b) in Lemma 11 it follows that for all ~ r  IR", 

~TU(z)a< (1 + cTH('~)-~c 
(cT=_~)2 ~TH(z)~<(1 +~-)~TH(~)~. 

Since A~ i = a i, ~)i = bi, 1 <~ i ~ m, from the definition of Q(z)  we get that 

T 2 
(~ia) ~T0(z)~> E ~,(z) 

i=l ( a T z - - b i )  2" 

(8.34) 

(8.35) 
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By Lemma 1 l(e), we get that 

cTH(Z) - t c 
5-,(z.) > 1+ )~ 

( & :  - ,~ 

So from (8.35) it follows that 

(~,(~,) >/(1 - 7")<(~) .  

e~O(~)e>~(l 7") ~:~,(~)  (<~)~ - - ( 1 - 7") ~ : ' r o ( z )  ~. 
T_ , : ,  (~ ,~ -  b,) ~ 

From (8.36) and Claim 2 it follows that for all ~ ~*', 

1 
~sq-O,(z)-',~< ~ T Q ( z ) - ' ~ .  

1--7" 

/x(z) is lower bounded as follows. We have that for all ~ ~ ~", 

~ ' r 0 ( z ) ~ > ~ ( 1 - - r ) ~ T Q ( z ) ~  (by 8.36) 

>/~( ~)(I - 7") ~ H (  ~)~ 
/*( Z ) ( 1 - r )  

> ~t?(z)r 
( l + r )  

Hence 

~(z)~ 
~(z)(1-~)  

We have that 

(by def. of ~ ( z ) )  

(by 8.34). 

(1+ , )  

(8.36) 

(8.37) 

(8.38) 

Q(z ) ' / 2~  

=~-r(Q( z) + 

= ~'rQ( z),/2( 

~-"rQ(z) E ( 1 + ( j~_  p)2 (~z_ ~)~ 

)2 )2 (c*z -/3 (Cz -/3 

cTH(z) - l c  cTQ(z) - 'C  

clH  ii 
- / ?J  - 

c'rH( Z ) - ' c  Q( z) ' -ccrQ( z ) - ' / 2  
I+  

-~r0( z)~ := Y'- ~i(z)  + (8.39) 
,=, ( ~ . - b , )  ~ (c~.~-~) 2 (c-i~_~) ~ 

By Lemma 1 l(b), c'rlq(z)- t c < cTH( Z)-  I C, and by Lemma 1 l(d), 5-,.(z) < o-i(z), 1 < i 
~< m. So from (8.39) it follows that 

(,-,T~) ~ c~H(~)-'c (c r ~)~ 
~:T0(z)_~ ~ o-i(:.) ~ + ,=, (a~z-bi)"  (cT.~-~):  ( cT~-~ )  2 
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Since V~: ~ {~", 
(l/,u,( z))cTH(z)-Ic. It then follows that for all ~ ~ JR", 

_ [ �9 (cTH( ) c)" 
~ r O ( Z ) ~  _s z )~  1 + 

~(:.) (c~: -/3 )~ 

T-  

~< 1 + /.t( z ~ T Q ( . : ) ~ .  

So from Claim 2 we can conclude that for all ~ ~ ~" ,  

l 

(1 + ~e/~(=)) 

Furthermore, 

~qQ( z.)~>~ 

Thus 

TQ(=)~>tx(Z)~VH(z)~ . ,  by Claim 2 we get that cTQ(2.)-Ic~ 

~IO(-)~ (by8.40) 

(by def. of t5,(z)) 

(by Lemma l l ( a ) ) .  

(1 + r ' / # ( z ) )  
~( : )  

(1 + 2 / ~ ( z ) )  

~(=) 
> (1 + r://x(=.)) ~rH(':)s 

[] 

~(z) > 
(1 + ~2/~( ~ t )  

Lemma 13 follows from (8.37), (8.38), (8.41) and (8.42). 

(8.40) 

(8.41) 

(8.42) 

P roof  of  L e m m a  14. We shall first prove a useful property about positive linear 
combinations, namely Property PLC. 

Property PLC. Let G = [g l ,  g2 . . . . .  g~,], gj r [R", 1 ~<j ~< p, let the columns of G span 
IR n, and let A > 0 be a lower bound on the smallest eigenvalue of  GG T. Suppose that 

IIE}% L gj 112 ~< V~-/(2 pn). Then 

Vsce [~" s.t. II ~ II, = 1 ,  m i n  { g f ~ }  <~ - - -  
" l<~j<~p 4p 

Let u = GT~: where ~ is some unit vector in R". Then II u 112 > fX- and 
P 

]uj] /> v~-. (8.43) 
j=l  

We have that 

j =  I j =  1 j 2 p n  
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Thus 

P 

j= 1 uj>0 uj<0 

So we get that 

d- 

2 pn 

lujl 2 l u j l +  I 
j= ! .j< 0 2pn  

From (8.43) it then follows that 

l u j l > -  T 1 - - -  >.>-- 
,,j< 0 2 pn 4 

Then noting that uj = gT,5 we get that 

rain {gT~}= _ max{l.jl} ~< - - -  
1%i~p u:<O 4p  

That concludes the proof of Property PLC. 

Let w = V F ( z )  and let r =  l . lV~.  We shall next show that the equation V F ( x )  = tw 

has a unique solution for t > 0 and that all points x satisfying V F ( x )  = / w ,  0 < t ~< 1, 
lie in the region I;( z, r). (Note that X( z, r )  = {x:l aT(x  -- Z ) / ( a T z  -- bi)[ ~< r, 1 ~< i ~< 

m}.) Then the fact that for arbitrarily small positive t, the soh, tion to V F ( x )  = tw lies in 
Z(z ,  r )  will be used to show that the polytope is bounded. 

Let q 6 ( x ) = F ( x ) -  tw, and let Inter ior(P) denote the interior of the polytope P. 
O,(x) has a minimum in Interior(P) for all t >  0 which is seen as follows. Since 
V F ( z ) -  w = 0 ,  by Lemma 1 we have that 

T .  ai + W = O. 
i=1 a i z -  bi 

Note that A has linearly independent columns. So from Property PLC above (with 

g i = ( ~  a r z - b i ) ) a r  l ~ < i ~ m ,  g m + ~ = w )  it follows that there exists a ~ > 0  
such that 

V~:E[I~ n, l[b~]12 = 1, rain{ min { ~  } �9 l < . i < c . ,  a te  - . aT~s "wv~ <~--A" 

Thus if we move along any direction from z either the distance to some boundary of P 
must decrease at some mininmm rate or the function twVx, t > 0, must decrease at some 
minimum rate (depending on t). So for each point x in Interior(P) that is either 
sufficiently close to a boundary of P or outside a sufficiently large sphere centered at z, 
~#,(x) > ~,(z) .  Hence the problem of minimizing ~',(x) over Interior(P) is equivalent to 

the problem of minimizing ~p,(x) over a closed set which is the intersection of a large 
sphere and a slightly shrunken version of P. Thus by the theorem of Weierstrass [5] 
~ , (x)  has a minimum in Interior(P) for t >  0. and the equation V F ( x ) =  tw has a 
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solution in InterioKP) for t > 0. By the strict convexity of F ( x )  the solution for each 

such t is unique. Furthermore from the Implicit Function Theorem [1.2] it follows that 

the function x =  x(t) defined by the equation V F ( x ) =  m'. t > 0, is analytic, since the 

coordinate functions of V F ( x )  are analytic functions of x over the interior of P. 

Note that Lemmas 7 and 8 hold for the trajectory defined by V F ( x ) =  By, t >  O. 

Suppose there exists a }, 0 < )~< 1 such that x(7){Y 21( .2 r). Then by Lemma 8 (with 

2 = z ,  ~= l) we get that 

1 - ? >  ( r - � 8 9  

(1 + ,-)"v/,,~0( =)- ' . .  

and noting that r =  1 . 1 ~  0.011 we have that 

wVQ(=) ' .028~u.( . w >  1 =) 

However, this cannot happen since by assumption w T Q ( z ) - t w  ~< 6V"ff(z ) . Thus for 

0 < t ~ < l ,  x ( t ) ~  E ( - ,  r). 

We shall now show that P is bounded. Let G(t)  = [gi ( t )  . . . . .  g,,(t)] where gi( t )  = 
cr~(x(t))/  (aJx ( t )  - b ) ) a p  1 <~ i <~ m. Since x( t )  E 2"( z. r). 0 < t ~< 1, from equation 

(7.16) in Lemma 5 (with .~ = z) it follows that 

( l - , - )  2 o-,(~) <.(x(O) (1+~)  ~ o-,(z) 
Vt. 0 < t ~ <  1, ~< ~< 

T_ __ hi " {1 +~):  ~:-~,~ a~.x(,)-b,  (1-,-)~ a,~ 

Then noting that z. = x(1), for 0 < t~< l we can express G(t )G( t )  T as 

G ( t ) G ( t )  T= G(I)D(t)G(I) T 

where D(t) is an m X m diagonal matr ix and each diagonal entry in D(t) lies in the 

interval [(1 - r ) ~ / ( l  + r )  6, (1 + r ) 4 / ( l  - r){']. Thus 

(1-- r )  4 
rain { s ~ T G ( t ) G ( t ) T ~ }  >~ - -  rain { ~ T G ( I ) G ( I ) T ~ } .  
gV#=l (1 -t-#') 6 ~r~=l 

Since A has linearly independent columns, G(I)G(1) T is non-singular, and so there 

exists a A* > 0 such that 

V t , 0 < t ~ < l ,  the smallest eigenvalue of G( t )G(  t) T i s a t l eas t  A*. 

We can then find a sufficiently small positive t* such that 

2 ( a * ) ~ / 2  i= g , ( t * )  = IIV'F(x(t*))ll2= I l t ' w l l 2 ~ <  2 m z T  

So from Property PLC above we may conclude that for all unit vectors s c 

nfin { ~ ) . ]  ~< ( A * )  1/2 
,~i~,,, aTx(t~:,---bi af~ 4m 

As a result i f  we move along any direction from = the distance to some boundary of  P 

must decrease at a certain min imum rate and it then fo l lows that P is bounded. [ ]  



P.M. Vaidya / Mathematical Programming 73 (1996) 291-341 341 

References 

[1] G.A. Bliss, Lectures on the Calculus o/' Variations, Phoenix Science Series (The University of Chicago 
Press, Chicago, IL, 1946). 

[2] S. Bochner and W.T. Martin, Several Complex Variables (Princeton University Press, Princeton, N J, 
1948). 

[3] D. Coppersmith and S. Winograd, "'Matrix multiplication via arithmetic progressions," Proceedings 19th 
Annual ACM Symposium Theory of Computing (1987) pp. 1-6. 

[4] M. Grotschel, L. Lovasz mad A. Schrijver, Geometric Algorithms and Combinatorial Optimization 
(Springer. Berlin, 1988). 

[5} M. Minoux. Mathematical Programming: "Fheops and Algorithms (Wiley, New York, 1986). 
[6] J. Renegar, "'A polynomial-time algorithm based on Newton's method for linear programming," 

Mathematical Programming 40 (1988) 59 93. 
[7] P.M. Vaidya, "'An algorithm for linear programming that requires O(((m + n)n 2 +(m + n)lSn)L) 

arithmetic operations," Proceedings 19th Anmml ACM 5),mposium Theory of Computing (1987) pp. 
29-38; also in Mathematical Programming 47 (1990) 175-201. 

[8] P.M. Vaidya, "'Speeding-up linear programming using fast matrix multiplication," Proceedings 30th 
Annual 1EEE Symposium F'oundations of Computer Science (1989) pp. 338-343. 

[9] P.M. Vaidya, "A new algotrithm t'or minimizing convex functions over convex sets," Proceedings 30th 
Annual IEEE Symposium Foundations of Computer Science (1989) pp. 332 337. 

[10] Gy. Sonevand, "An analytical center for polyhedrons and new classes of global algorithms for linear 
(smooth convex) programming," Preprint, Department of Numerical Analysis, Institute of Mathematics. 
Eotvos University (Budapest, 1989) pp. 6-8. 

[I l l  J.L. Goffm and J.P. Vial. "Cutting plaues and column generation techniques with the projective 
algorithm," CORE Discussion Paper 8829, CORE, Universite Catholique de Louvain (Louvain, Belgium, 
1988). 

[12] Y. Ye, "'A potential reduction algorithm allowing column generation," Working paper, Department of 
Management Sciences, University of Iowa (Iowa City, IA. 1989). 

[13] S.P.Tarasov. L.G. Khachiyan and l.I. Erlicb. "'The method of inscribed ellipsoids," Soviet Mathematics 
Doklady 37(I) (1988). 


