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Abstract We describe a new algorithm for minimizing a convex
function over a convex set. The notion of a volumetric center of
a polytope and a related ellipsoid of maximum volume inscrib-
able in the polytope are central to the algorithm. The algorithm
has a much better rate of global convergence than the ellipsoid
algorithm.

1. Introduction

Let S < R” be a convex set for which there is an oracle
with the following property. The oracle accepts as input any
point in R". If the input z € S then the oracle returns a "Yes";
whereas if z € S then the oracle returns a "No" along with a vec-
tor ce R" such that S {x:cTx2c"z}. The feasibility
problem is the problem of finding a point in S given an oracle
for S. The convex optimization problem is the problem of
minimizing a convex function over S. In this paper we shall
describe a new algorithm for the feasibility problem. An easy
modification to the algorithm for the feasibility problem will
give an algorithm for the convex optimization problem. For
simplicity we shall assume that S is contained in a ball of radius
2L centered at the origin and that if S is nonempty then it con-
tains a ball of radius 2~%. Our algorithm easily adapts to the
different versions of the feasibility and the optimization prob-
lems described in [4].

A generic iterative algorithm for the feasibility problem is
as follows. We maintain a region R such that S ¢ R. At each
iteration we choose a test point z in R and call the oracle with z
as input. We halt if ze S. So suppose z € S. Then the oracle
returns a vector ¢ such that V xe S, c¢Tx2c’z. Let
B<cTz. ThenSc (RN {x:c"x=P}) and R is reset 1o be
the region (R N { x: cTx2 B }). As the algorithm proceeds R
shrinks and its volume decreases at a certain rate. If § is
nonempty then it contains a ball of radius 2-L and the algorithm
halts with a point in S before the volume of R falls below 2L
If S is empty then the algorithm halts the first time the volume
of R falls below 2~ and since R contains § this gives a proof
that S is empty. During the course of the algorithm the descrip-
tion of R can become complicated and choosing the test point
can become expensive; so if the region R becomes too compli-
cated we replace R by a simpler region that contains R; such a
replacement trades volume for computational efficiency and the
algorithm still converges.

The well-known ellipsoid algorithm {4, 5] falls in this gen-
eric scheme; in the ellipsoid algorithm the region R is an ellip-
soid and the test point used is the center of the ellipsoid.
Another algorithm due to Levin [5] uses simplices instead of
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ellipsoids. Our algorithm also follows the above scheme. In our

case the region R is a bounded full-dimensional polytope

P ={x:Ax2b} where Ae R™", be R". The test point

we use is the point that minimizes the determinant of the Hes-

sian of the logarithmic barrier for P. Specifically, the loga-
m

rithmic barrier is the function - Zln(airx — b;) and its Hes-
i=1

sian evaluated at x, denoted by H(x), is given by

e = 5 1

x) = —_—

S (afx - b;)?

where af  denotes the ith row of A Let

F(x) = %ln(det(H(x))) where det(H(x)) denotes the deter-

minant of H(x), and let @ be the point that minimizes F(x) over
P. The point ® will be called the volumetric center of P. We
use ® (or a good approximation to ®) as our test point. The
function F(x) is strictly convex and a Newton-type method can
be used to compute a good approximation to @ efficiently. The
polytope P is also trimmed from time to time (i.e. some of the
planes defining P are dropped) so that the number of planes in
the description of P does not grow beyond O(n).

The volume of P decreases by a fixed constant factor
(independent of the dimension n) at each iteration on the aver-
age, and our algorithm halts with a point in S (or with the con-
clusion that S is empty) in O(nL) iterations. During each itera-
tion we have to invert an nxn matrix (and solve a system of
linear equations), and possibly query the oracle once. Let T be
the cost (in terms of number of arithmetic operations) of one
query to the oracle. Then the total number of arithmetic opera-
tions performed by our algorithm is O(TnL + n*L), and the
total number of calls to the oracle is O(aL). If we use fast
matrix multiplication for performing the matrix inversion the
total number of arithmetic operations reduces to
O(TnL + M(n)nL), where M(n) is the number of operations for
multiplying two nxn matrices. (It is known that
M(n) = 0(n%*3*)[3]) The ellipsoid algorithm was previously
the best known algorithm for the feasibility problem. In the
ellipsoid algorithm the volume falls by a factor of about

1 . . . . R
(1 — —) at each iteration, and the number of iterations is
n

0(n2L). The total number of arithmetic operations in the ellip-
soid algorithm is O(Tn%L + n*L), and the total number of calls
to the oracle in O(nzL). (Using fast matrix multiplication does
not reduce the number of operations performed by the ellipsoid
algorithm.) Thus our algorithm performs asymtotically fewer
operations as well as fewer calls to the oracle. The reason for
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stressing the number of calls to the oracle is that in many cases
the cost of querying the oracle far exceeds the other costs in the
algorithm [4].

A natural question that arises is : Is there a simple but
intuitive explanation for why is the volumetric center ® a good
test point ? The question may be anwered as follows. Let
E(H(x), x, r) denote the ellipsoid given by

EH@),x,r) = {y: (- 0TH®O-» <},
E(H(x), x, 1) c P and may be thought of as a local quadratic
approximation to P. E(H(®), ®, 1) has the largest volume
among all such ellipsoids E(H(x), x, 1) and is hence a max-
imum volume quadratic approximation to P. A plane through o
divides E(H(®w), ®, 1) into two parts of equal volume; so there
is a good chance that a plane through ® divides P into two parts
with approximately equal volume (loosely speaking). So if the
process of cutting P through o is iterated the volume would be
expected to decrease at a good rate.

There is also a simple intuitive reason for why our algo-
rithm has a faster rate of convergence than the ellipsoid algo-
rithm. In the ellipsoid algorithm the half-ellipsoid to which the
set S is localized after an oracle query is immediately enclosed in
another smaller ellipsoid and the vector ¢ generated by the oracle
is not used in subsequent steps; as a result a considerable amount
of information is given up at each step. Since our algorithm
works with polytopes instead of ellipsoids the cutting planes
generated by the oracle are maintained for several steps after
they are generated and continue to directly influence the choice
of the test point. Furthermore, hyperplanes are dropped and the
polytope P is trimmed not at each step but whenever necessary.
As a consequence more of the information generated by the ora-
cle gets utilized and the volume of P shrinks at a geometric rate
independent of n.

A byproduct of our algorithm is an algorithm for solving
linear programming problems which performs a total of
O(mnzL + M(n)nL) arithmetic operations in the worst case,
where m is the number of constraints and n is the number of
variables; this gives an improvement in the time complexity of
linear programming for m > n?[8]. We also note that if the
polytope P is not trimmed in our algorithm (i.e. we do not dis-
card any plane generated by the oracle) we still get a convergent
algorithm that halts in O(n2L?) iterations.

2. An Overview

In this section we shall describe the algorithm for the feasi-
bility problem. But first we shall introduce some notation. Let
P be the bounded full-dimensional polytope

P={x:Ax2b}
where A e R™", b e R™ and x € R”. Let H(x) be defined as

aiaiT

(alx - b;)*

Hx) = ¥

i=1
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where a! denotes the ith row of A. H(x) is the Hessian of the
m

logarithmic barrier function Y, — In(alx - b;) and is positive
i=1

definite for all x in the interior of P. Let F(x) be defined as

FG) = In(det(H) )

where det(H(x)) denotes the determinant of H(x), and let ® be

the point that minimizes F(x) over the polytope P. The point ®

will be called the volumetric center of P. Let VF(x) (V2F(x))

denote the gradient (Hessian) of F(x) evaluated at x. Let

cz,~TH(x)'1 a;

(alx - b;)*’

The gradient VF(x) may be written as

VF(x) = -3 6:(x)

i=1

c;(x) = 1<i<m.

a;
alx-b;
Let Q(x) be defined as
T

a;a;
(afx— b))t

Note that Q(x) is positive definite over the interior of P. Q(x)
is a good approximation to V2F(x); specifically, the quadratic
forms ETV2F(x)€ and £TQ(x)& satisfy the condition

VEe R, SETOWE 2 ETVIFME 2 §T0ME.
Since Q(x) is positive definite this condition implies that F(x) is
a strictly convex function over the interior of P. Let u(x) be the
largest number A satisfying the condition that

V Ee R, ETO(E 2 LMETH(OE .

We shall now describe the algorithm for the feasibility
problem. The algorithm starts out with the simplex

n
P={x:x;2-2L 1<j<n, xj < n2L}. (The algo-
J P

0 = ¥ oix)

i=1

rithm could start with any polytope whose volumetric center is
easy to compute, say for example a box.) Since S is contained
in a ball of radius 2% centered at the origin, initially S ¢ P.
Throughout the algorithm S and P satisfy the relation S c P.
Let 8 and € be small constants such that &< 1074 and
€<10735. At the beginning of each iteration we have a point
z € P such that
F(z) - F(0) < €* p(o) .
(Note that when the algorithm starts the polytope P is just a sim-
plex and an explicit solution to VF(x) = 0 is easily obtained for
a simplex.) The computation performed during an iteration falls
into two cases depending on the value of . lsmg {o:(2) }.
i m

Casel. min {o;(z) } 2e.
1<ism

In this case we add a plane to the polytope P. First, the oracle
is called with the current point z as input. The algorithm halts if
z € §; otherwise the oracle returns a vector ¢ such that

Vxe S, cTx2cTz.
We choose B such that ¢z = B and
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cTH@) e _ (8e)1/2

(cTz—B)Z 2
LetA = [’2] and b = [g] A and B are reset as
Ac—A, beb.

Since @ shifts due to the addition of a plane to P, we use a
Newton-type method to move closer to ® as follows.

For j=1 to [30In(2e*%)1do z « z — 0.18 Q(z)"' VF(2) .

Case2. min {0;(z) } < €.
1<ism

In this case we remove a plane from the polytope P. Wlog sup-
pose that 6,,(z) = 1min {c6i(z)}. Let a,, = ¢, b, = B,
Sism

bl. A and b are reset as

B
Ac—A, beb.

Since o shifts due to the removal of a plane, we use a Newton-
type method to move closer to ® as follows.
For j=1 to [30In(4e~%)1do z « z — 0.18 Q(z) ' VF(z) .

The convergence lemma below summarizes the behaviour
of the algorithm; its proof will be given in the full paper.
Convergence Lemma. Let 5 < 1074, let € < 10725, and let p*
denote the value of F(®) at the beginning of the k¢ iteration.
Then at the beginning of each iteration z satisfies the condition

F(z) — F(®) < ¢* p(w) .

Futhermore, the following statements hold.

A=

oo

1. If Case 1 occurs during the kth iteration then
£y (38)2
p -pF 2 — -

2. If Case 2 occurs during the kth iteration then
pk—ptl <5e m

k+1

Bounding the number of iterations. Let n* denote the
volume of the polytope P at the beginning of the kth iteration.
Using the Convergence Lemma we shall next obtain an upper
bound on n*, and show that the algorithm halts in O(nL) itera-
tions. An easy consequence of the Convergence Lemma is that

pk 2 p° + 525 .
We bound =¥ as follows. Note that if x” is the point that max-
imizes the logarithmic barrier over P, then [see 6]
Poc{x:(x-x)THX )x-x") sm?}.
Thus

volume(P) < (2m)" (det(H(x")))~1"2
< @2m)" (det(H(w)))™ 12

< 2myt e F@ |

m
Since ¥ o0;(x) = n (Claim 3, section 7.1), m cannot exceed
i=1

n/e. Then as p0 2 —(n(L+1) + In(n+1)), we get that
In(n*) < nin(2m) — p*
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< nin(2n/e) — p° —"2—6
ke
< n(L+In(2n/e)+1) + In(n+1) - 7

Thus the volume of P must fall below 2= in O(nL) iterations.
Hence the algorithm must halt in O(xnL) iterations since § c P
and § contains a ball of radius 2~ if it is nonempty.

Number of arithmetic operations. Since m = O(n), the
weights 6;(x) may be computed in 0(n*) operations, and then
0(z), 0(z)~! and VF(z) may be evaluated in O(n*) additional
operations. Furthermore, the oracle is called at most once per
iteration and one such call costs T operations. It then follows
that the number of operations per iteration is O(T + n3). Using
fast matrix multiplication the number of operations per iteration
may be reduced to O(T + M(n)) where M(n) is the number of
operations for multiplying two nxna matrices. (It is known that
M(n) = 0(n**) [3].) Since the number of iterations is O(nL),
the total number of operations is O(TnL + n*L) without fast
matrix multiplication and O(TnL + M(n)nL) with fast matrix
multiplication. The total number of calls to the oracle is O(nL).

3. Adding/deleting a plane and moving closer to the
volumetric center ®

In this section we shall discuss three theorems on which
the proof of the Convergence Lemma in section 2 is based; their
proofs will appear in the full paper.

Theorem 1. Let 8 < 1074, let n = Q(z)~! VF(z), and let
r be a scalar such that 0 < r<0.2. Letz’ = z — Ay where A
is defined as follows.

If F(z) - F(o) < 8 Vp(m)

_ ral/Z(u(Z))IM
C (VR ™"
Then the following statements hold.
1. If F(z) -~ F(®) € §Vp(w) then

F(2’) = F(®) < (1 = 0.71r + 1.9r%) (F(z2) - F(0)) .
2. U F(z) - F(w) > 8 Vp(0) then

Fz) - F(zy 2 0= 2.65r%) 8
2Vm

Theorem 1 states that a Newton-type algorithm for minim-
izing F(x) will converge linearly if started from a point z such
that F(z) - F(®) < 3 Vp(®), 5107 It also states that
taking a Newton-like step from a point z such that
F(z) — F(w) > 8 Vi(w) will decrease F by at least

Q1 /Vm).

The next two theorems address the following question: by
how much does the minimum value of F(®) increase (decrease)
when we add (remove) the constraint ¢7x > B to (from) the set
of constraints defining the polytope P? We shall require some
additional notation to denote the polytope obtained by adding
(removing) a plane to (from) P, and the related functions and

then A=r else
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matrices. Let Ae R™", b e R™, and let P be the polytope
P={x:Ax2b}. LetH(x)bedeﬁn%das

B a8

2@ x-b)? ’

let F(x) = %ln(det(il(x))), and let & be the point that
polytope P. Let

Hx) =

minimizes F(x) over the

- a;H(x)™'a; L.
0','(1) = —7-——;—-—,1$¢Sm, let
(@ix - b)) r
- # a;d;
0x) = 3 &:i(x) —1—=—
Ex * (@;x - b;)?

and let [i(x) be the largest number A such that
vEe R, ETQ(0E = AETH()E .
Theorem 2, Let A= [A]. b= [b] and
_ ¢ B
P=Pn{x:cTx2P} Letze P, let a<5<10"* and let
a < 8 p(z). Suppose that F(z) — F(0) < o p(®) and that

CTH(Z)_]L‘ - a_/z Then

(cTz - B)? 2

F(z) - F(®) < 033302 < 0.435 Vii(®)

and
- al?2
F(®) - F(®) 2 3 [ ]
Theorem 3. Let A= A , b = [g] and
c

P=Pn{x:cTx2B}. Letze P,let <5< 107% and let

FT(Z) N I;‘(a)) < o p(w) . Suppose that

EC:{(Z)ﬁ)g <min {@, u(z) }. Then the polytope P is
7 —

bounded,

F(2) - F(®) < min {4 @), 8 V@) }.
and
F(®) - F(®) <50 m

4. Variants of the algorithm

The algorithm in section 2 is designed to obtain the best
worst case time complexity. But an algorithm that has best the
wOrst case running time may not necessarily be the one that
gives the best performance in practice. Building on the ideas in
the basic algorithm we can construct a wide variety of algo-
rithms for the solution of convex programming problems. This
will give us the flexibility of being able to design algorithms that
suit the given problem and to exploit any additional information
about or any special structure in the set of constraints describing
S if any. Several variants of the basic algorithm are possible.
One possibility is to keep on adding planes generated by the ora-
cle without ever removing any plane (i.e. discard Case 2 from
the algorithm); such an algorithm would converge in O(n%L?)
iterations since by Theorem 2 (section 3, with o = &/m) the
value of F(w) would increase by Q(1/ m ) at each iteration.

As a sample we shall describe two more ways of obtaining vari-
ants of the basic algorithm.

The volumetric center as a weighted analytic center. The
weighted analytic center t(w) of the polytope P is the point that
minimizes the weighted logarithmic barrier function

m
logbar(w, x) = — Y, w; In(alx - b))
i=1
over P where w;, 1 <i<m, are positive weights. (w; is the
weight on the plane alx = b;) The gradient of the weighted
logarithmic barrier is given by

m
Vliogb X)) = = W —— .
ogbar(w, x) E‘l i p—

ai;

Comparing this with
VF(x) = E‘; Gi(x) P
we get that the volumetric center @ is the minimizer of the
weighted logarithmic barrier — ’zn: c;(®) ln(a;Tx -b).
i=1

In the basic algorithm in section 2 the volumetric center of
P is used as a test point. The idea is to use a weighted analytic
center as a test point instead of the volumetric center. The
weights ©;(x) would guide the choice of the weights w;. One
possibility is to use a weighted analytic center m(w) such that
the weights Wi satisfy the condition
o o;(t(w)) £ w; £ ay o;(r(w)) , 1<i<m, where
o , Oy are some constants. The key point is to ensure that the
weighted analytic center T(w) does not lie close to a plane with
a small weight on it. One important reason for looking for vari-
ants along these lines is as follows. The main computational
effort in the basic algorithm (except for querying the oracle) is in
computing the weights 6;(x); so if one can design an algorithm
where it suffices to compute coarse approximations to the
weights ¢;(x) then it could lead to a better running time in
theory and/or practice. Even better would be an algorithm that
somehow uses these weights implicitly and does not require their
explicit computation.

Combination of determinant barrier and logarithmic
barrier. Suppose we want to solve

min g(x)
S.t. xe P

where g(x) is a differentiable convex function. An iterative
algorithm for the solution of this problem is as follows. During
the kzh iteration we choose a test point z(k) in P and compute a
vector c(k) (by differentiating g(x) at z(k)) such that
{x:8(x)< gz Y < {x:c)Tx2c(k)T2(k) }
and compute a suitable B(k) sn.}tch1 that c(k)Tz(k)T> B(k). Let
< c(k)e(k)
Bl =rl+ B T - paoy?

where r > 0 is a suitable fixed scale factor, and let
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m
y(k, x) = In(det(B(k,x))) - ¥ In(afx-b;) .
i=1
The test point z(k) is chosen to be the minimizer (or a good
approximation to the minimizer) of (k, x) over the polytope
Pr{x:c(NTx2P(j), 1<j<k-1}. y(k, x) consists of a
determinant barrier together with the logarithmic barrier for P;
the determinant component pushes z(k) towards decreasing
values of g(x) and the logarithmic barrier keeps z(k) away from
the boundaries of P.

5. Linear programming via path of volumetric centers
Consider the linear programming problem

max ch

st xeP.

Various known interior point algorithms for this problem follow
the path of analytic centers to the optimum [6,7]. (The analytic
center is the weighted analytic center with each of the weights
w; equal to 1.) Instead we can design an algorithm that follows
the path of volumetric centers. The path of volumetric centers is
defined by the equation

VF(x) = tc, te R, t20.

It is the set of all points in the polytope P where the gradient of
F(x) is a non-negative multiple of the cost vector ¢. Such an
algorithm would start from the volumetric center and follow the
path of volumetric centers using Newton-Raphson steps in a
manner similar to the algorithms that follow the path of analytic
centers [6,7].

Another possibility is to follow a path of hybrid centers.
The path of hybrid centers is defined by

VF(x) + rViogbar(e,x) = tc, te R, t20.

where e € R™ is the vector of all ones, and r is a fixed positive
constant. Note that logbar(e, x) is just the logarithmic barrier
for P; so the hybrid center may be thought of as a combination
of the analytic center and the volumetric center. The author has
obtained an algorithm that follows a path of hybrid centers (with
r=n/m) and solves linear programming problems in
0((mn)” "L) iterations; each iteration is a Newton-Raphson step
and involves inverting a matrix and solving a system of linear
equations. (Here L is a standard parameter; for a definition of L
see [7).) This improves on the previously best known bound of
0(\/; L) iterations [6] when n = o(m). Details and a complete
presentation will be given in a subsequent paper.

6. Properties of F(x)

In this section we shall study the function F(x). Let the
polytope P, H(x), F(x), the volumetric center ®, 6;(x), @(x),
and p(x) be as defined in section 2. Let Z(x, r) be the region

342

T

I(x,r) = {y:Vi, 1<i<m, |MI <r}.
a;x—b;

Note that if r <1 then Z(x,r) ¢ P. Lemmas 1 through 10
below summarize some of the properties of F(x). Proofs of
these lemmas will be given in a full version of the paper. Lem-
mas 1 and 2 give explicit formulae for the gradient and the Hes-
sian of F(x) respectively.

Lemma 1.
m a;
VF(x) = - Y 0,(x) w——— =
i=1 ajx - b;
L 2. Let l % . Then
emma 2. u; = - .
v alx - b; aij -b;

V2F(x) = Q(x)
(@TH(x) 1a;)?

+ 2
15i5ssm (@lx = b)) (alx — b;)?

T
uju; m

Lemma 3 states that Q(x) serves as a good approximation
to V2F(x).

Lemma 3. The matrices Q(x) and V2 F(x) satisfy the condition
Vv EeR", S5ETQME 2 ETVZF(0E 2 ETOmE .
Hence, VZF(x) is positive definite and F(x) is strictly convex

over the interior of P. m

Lemma 4 states that the value of the quadratic form
ETQ(x)E does not deviate too far from the value of the quadratic
form ETH(x)& and gives bounds on p(x).

Lemma 4.
Y &e R", ETH(x)E 2 ETQ(0E 2 # ETH(x)E |
and thus
12000 2 max { min {00}, 7} -

Lemma 5 formalizes the observation that for all x in
3(%, r) the quadratic form &7Q(x)E does not deviate too far
from the quadratic form ETQ(R)E if r is less than some small
constant.

Lemma 5. Suppose that r < 1 and that x € T(X, r). Then for

allE e R",2 R
8;: ;4 FTOME < ETQME < % Frod)E
and
Y 4
E—:—::—)T BG) < pex) < ((%%7 pG@ W

Consider the equation VF(x) = tw where ¢ is a scalar and
w is a fixed n-dimensional vector. This equation implicitly
defines x as a function of ¢ and Lemma 6 summarizes some of
the properties of this implicitly defined function that can be
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derived from the implicit function theorem {1, 21.

Lemma 6. Let ®(x, ) = VF(x) — tw where e R and w
is a fixed vector in R*. Then the equation ®(x, ) = 0 impli-
citly defines x as a function of ¢, and we may write x = x(1).

Moreover, x(#) is an analytic function of f, and dxd(:), the
derivative of x(#) w.r.t ¢ evaluated at ¢, may be written as
EO _ yrpie,
dt

and if 0 < ¢ <1, then

% L? ¢ wlQ(x)y tw dr S F(x(13)) — F(x(11))

< L:Z twlQx) 'wdt m

Consider the trajectory VF(x) = tw, where t € R and w
is fixed, that passes through X. Lemma 7 gives an upper bound
on the derivative of In(alx(t) — b;) w.rt ¢ for the portion of
this trajectory in Z(%, r) in terms of quantities evaluated at %
Lemma 8 gives a lower bound on how much ¢ must change
before the trajectory reaches the boundary of Z(x, r).

Lemma 7. Let w be a fixed vector in R”, and let X be such that
VF(%) = w for some scalar 7. Let ¢t € R, and let x = x(z) be
a point on the trajectory VF(x) = tw such that x e (X, ),
r<l. Thenforl<i<m,

T dx(1)
4

|
alx -

(1+r® wo@® W'
a-n* et

b;

Lemma 8. Let r < 1, let w be a fixed vector in R”, and
let % be such that VF(%) = Fw for some scalar 7. Let x(7) be
a point on the trajectory VF(x) = tw, t € R, such that x(7)
does not lie in the interior of £(X, 7). Then
(r = ) (1=r) (i)™

|2-7| > 2 =
A+r3Nwio@®'w

Lemma 9 gives a sufficient condition in terms of
VF(2)TQ(z)"'VF(z) and p(z) for the point z 1o be in the
region Z(®, ).

Lemma 9. Let 8§<107% 1let ze P and supposc that
VF(2)T0(z)" ' VF(z) < 8Vu(z) . Then o e I(z, 1.1V3),
u(z) € 1.1 (@), and
F(z) — F(®) € 0.55 VF(2)TQ(z)"'VF(z) m
Lemma 10 states that if F(z) — F(®) is small then the
quantities F(z) — F(®) and VF(z)7Q(z)™! VF(2) closely track
each other.
Lemma 10. Let 8 < 10~* and let z be a point in P such that
F(z) - F(®) < 8 V(o) . Then ze (o, 5V3),
w(w) < 1.5 u(z), and
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0.14 VF(2)TQ(z) ' VF(z) £ F(z) - F(®)

1.4 VF(2)TQ(z) ' VF(z)

A

6.1. Some useful claims

We shall state four claims which are used in the proofs of
the Lemmas and Theorems. For a symmetric positive definite
nxn matrix B, we shall let E(B, x, r) denote the ellipsoid given
by

EB.x,r) = {y:(y-0TBy-x sr*}

Claim 1. Let B be a positive definite matrix, and let w be

an arbitrary fixed vector in R”. Then
max [ wT(—-x)2} = rPwlB lw.
ye E(B,x,r)

Claim 2. Let © > 0, and let B, B, be nxn positive defin-
ite matrices. Suppose that V §e R”, ETB & 2 0 ETB,E .
Then V Ee R*, ETBT'E < %g’s;‘g .

m (@TH(x) 'a))?
Claim 3. o;(x) = Y, ,
! =N b)) (alx - bj)?
o:(x) £1,1<i<m .Moreover, ¥, 0;(x) = n
i=1
alow'a; 1
(alx-b)" = Y@
EQ@), x, (W) ¢ (1) .

and

Claim 4.

,1<i<m,and thus
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