
Rectilinear shortest paths through polygonal obstacles 
in 

O(n (log n)2) time 

Kenneth L. Ciurkson, Sunjiv Kupoor, und Pruvin M. Vuidyu 

AT&T Bell Laboratories 

Murray Hill. New Jersey 07974 

Abstract 

The problem of finding a rcctilincar shortest path 

amongst obstacles may be stated as follows: Given a set of 

obstacles in the plane find a shortest rectilinear (L ,) path 

from a point s to a point t which avoids all obstacles. The 

path may touch an obstacle but may not cross an obstacle. 

We study the rectilinear shortest path problem for the case 

where the obstacles are non-intersecting simple polygons, 

and present an O(n (10gn)~) algorithm for finding such a 

path, where n is the number of vertices of, the obstacles. 

We also study the case of rectilinear obstacles in three 

dimensions, and show that 15, shortest paths can be found 

in O(n2 (log II)‘) time. 

1. Introduction 

In this paper we consider the problem of finding rcc- 

tilincar (L,) shortest paths bctwcen points when thcrc may 

bc obstacles present. The problem may be formulated as 

follows: Given a set of obstacles in the plant find a shortest 

rectilinear (L,) path from a point s to a point t which 

avoids all obstacles. The path may touch an obstacle but 

does not cross an obstacle. In (RLW] Rezende, Lee and 

Wu study a version of this problem where the obstacles are 

n rectangles with sides parallel to the coordinate axis. They 

present an O(nlogn) algorithm for constructing the optimal 

path. Other shortest path problems have been studied in 
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[LPWJ, ILP] where the metric used is Euclidean. Larson 

and Li [LL] studied a similar problem of finding all 

minimal distance rectilinear paths among a set of m sourcc- 

destination pairs in the plane with polygonal obstacles. The 

algorithm in ILL] runs in O(m(m2+n2)) time where n is 

the number of vertices of the obstacles, and m is the 

number of source-destination pairs. 

We shall describe an algorithm for finding a shortest 

rectilinear (L,) path between s and t for the case where the 

obstacles are non-intersecting simple polygons (the polygons 

may touch at vertices). The algorithm runs in O(n(logn)2) 

time where n is the number of line segments defining the 

boundary of the simple polygonal obstacles. The input is 

given as a collccGon of n line segments which may intersect 

only at endpoints, and for each line segment it is known 

whether the interior of an obstacle (if any) lies to the Icft 

or the right of the segmcnl. WC shall rcfcr to the given 

lint scgmcnts as obstacle line scgmcnts. To simplify the 

presentation we shall assume that each obstacle has non- 

zero area. The algorithm described can be easily modified 

to handle obstacles which have zero area. 

The rectilinear (IL:,) shortest path algorithm proceeds 

by constructing a weighted visibility graph V/.S( V,&) whose 

vertices are points on the plane which include the points s 

and l, the 2n endpoints of the given line segments, and 

some additional points catted Steiner points. Each vertex Y 

is connected to some of the vertices visible from Y. The 

weight of an edge (u.v) is the Ll distance bctwecn u and v. 

The purpose of introducing Steiner points is to reduce the 

number of edges in the graph V/S(V.E) to Oinlogn). Find- 

ing a shortest path between Y and t in the graph VIS(V,E) 

gives a rectilinear shortest path between s and t that avoids 

all obstacles. and such a shortest path may bc found in 

O(n (logn)2) time using Dijkstra’s shortest path algorithm. 

IDl 

How can adding more vertices to a graph allow it to 

have fewer cdgcs? The key idea is this: suppose that three 

points p, q, and r have x-coordinates satisfying pXlql’r, 
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Figure I, I. A path from p to r via 4, 

and y-coordinates satisfying ~~54~ sr,. (See Figure I. I) 

‘I’bcn the L, distance from 11 to r is the sum of Ihc L, dis- 

~ncc from p to 4 and from 4 to r. This implies that I!., 

distance information bctwecn a set of points in the third 

quadrant around 4 and a set of points in the first quadrant 

around 4 can be succinctly represented via paths through 4. 

Thus the addition of Steiner points positioned like 4 can 

reduce the number of edges necessary in a visibility graph. 

This idea has been used previously by Guibakand Stolfi for 

minimum spanning trees under the L, metric. [GSJ 

In section 2 we describe the visibility graph 

VIS(V,E). and show that finding a shortest path in 

VIS(V.E) does give a shortest L, path that avoids all obsta- 

cles. In the third section WC describe how to add Steiner 

points and construct the. graph V/S(V,E). Finally, in sec- 

tion 4 we describe how the algorithm can be extended to 

find ;I shortest rectilinear path in three dimensions when the 

obstacles arc rectilinear objects with sides parallel to the 

coordinate axis. 

2. The Visibility Graph V/.S( V,E) 

In this section we describe a weighted visibility graph --- 
V/S( V-E), whcrc c is the set of points comprising the poinls 

.Y and I. and the (at most) 2n endpoints of the obstacle line 

segments. The weight of an edge in 2 is the L, distance 

bctwccn its two endpoints. If an edge (p, 4) is in E then p 
and 4 are visible from each other, but the converse does not 

always hold. A shortest path between s and t in the graph 

E(V,E) gives a shortest f., path between s and I which 

avoids all obstacles. However %(V,E) may have Jl(n’) 

edges. so WC actually construct a sparse visibility graph 

V/S(V.E) whose vertices consist of all the points in v 

togcthcr with some extra Steiner points. For each edge 
--- 

(ij.4) in V/S(V.E), there is a path of the same LI length 

bctwccn p and y in V/S(V,E). 

bc visible from point p iff the straight line joining 4 to /J 

does not intersect the interior of an obstacle. WC ICI p, and 

pY denote the x and y co-ordinates of a point p. Let C(p) 

denote the translated coordinate system with p as the ori- 

gin. The first quadrant of C(p) is the set of all points 4 

such that pI- I 4, and pY 5 4.“. Number the remaining qua- 

, drants counterclockwise about p. The quadrants arc closed 

regions, so a point on the vertical or the horizontal axis of 

C(p) belongs to more than one quadrant. WC define four 

different kinds of dominance relations among points, and 

say that p i-dominates 4 if 4 is in quadrant i of C(p), for 

i= 1.2.3.4. A point 4 is said to be i-dominated by p iff 

p i-dominates 4. 
--s 

The graph V/S(V,E) is defined as follows: the vertex 

set V consists of the points s and t and the (at most) 211 

endpoints of the given R obstacle line segments. We will --- 
indicate the edges (p.4) in V/S(V,E) when 4 is in the first 

quadrant of C-(/J). (The other edges arc defined symmctri- 

tally.) To do this. the following definitions will bc useful. 

Let Lv and LH denote the line segments or rays 

defined as follows. As we move up from p nlong the y-axis 

of C(p), L, is the first obstacle line segment which intcr- 

sects the positive y-axis of C(p), and also intersects the 

interior of the first quadrant of C(p). If there is no such 

line segment, then Lv is the vertical axis of C(p). As we 

move right from p along the x-axis of C(p), L,, is the first 

obstacle line segment which intersects the positive x-axis of 

C@), and also intersects the interior of the first quadrant 

of C(p). If there is no such line segment, then LH is the 

horizontal axis of C(p). 

Let P@) denote the set of points in the first qua- 

drant of C(p) that are not blocked from p by LH or Lv. 
That is, a point r in the first quadrant of C@) is in P@) if 

and only if the line segment p does not intersect LH or Lv. 
We include in IT(~) all the points on the boundary of IT(~) 

except the point p itself. The region a(p) is illustrated in 

Figure 2. I. 
--- 

For p.yCv and 4 in the first quadrant of VfS(V.E), --- 
an edge b,y) is included in VfS(V,E) if and only if 4 is in 

a set S(p), which is defined as follows. A point 4 is in 

S(p) if and only if both of the following hold. 

I. There is no 4’Ei such that 4’ is in a(p) and 4’ l- 

dominates 4. 

2. 4 is visible from p. 

We will also need a set S’(p), whose definition ful- 

lows that of S(p). with the removal of condition 2. 
--- 

We will prove below that a shortest path in VIS(V.E) 

between vertices in 7 is a shortest L, path that avoids all 

obstacles. To prove this, a geometrical structure containing 

S(/J), called a staircase. will be useful. Consider that 
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f’igutc 2. t ‘t‘hc potygonrrl region n(p). 

-. .---.-- -- 

por~r~~n of IIIC region n(l)) which is visit& from p. and is 

noI I-dominalcd by points in S(/J). ‘L’hc boundary of this 

rcglon consihts of poinls in the positive x and y axes 01 

(‘f/4), poinlh in f.,, and Ly, and a section containing the 

pcunls of X(/J), which will bc called a stuircasc. (.Scc Fig- 

urc 2.2.) On this staircase. the points in X(/I) arc arranged 

so (hat the y-coordinate dccrcascs with increasing X- 

coordinalc. WC have tbc following Icmmr: ’ 

lxmmv 2.1. AdJaccnl vcrticcs (points) on the stair- 

GM arc connccrsd hy at most three lint SC~IIXII~S: first a 

hcBrir.crntal lint scglucnl, then a lint scgmcnt witb ncgativc 

\lopc. and finully il vertical lint scgmcnt. 

Itcw& Consider that subscl of the region IT(~)) that is 

noI I-dominalcd by points in S’(p). ‘I’hc boundary of this 

suhhf( of n(l)) ccmsisls of portions of lhc .r and y axes, por- 

1kMlh ol' /.,, md f.,!, and also of ;I collcctlon of oltcrnating 

vcrl~cxl ;md horizonlal lint scgmcnts incidcnc lo S’(I)). 

t ‘ill1 thz Mtcr collection lhc S’(p)-staircase. Suppose that 

I>, iml /jr ilrc consccurivc vcrliccs in S(i)). Consider that 

portron of the S’(p)-staircase bctwccn 11, and I)~. Let /I bc 

the horizontal scgmcnt incident to 11,. and Ict v hc the vcrti- 

wl scgiiicril incident lo /jr. Let I bc the obstacle lint scg- 

I~ICI~I whose intcrscction with h has smallest x coordinate in 

(‘(I’). ;mtl has minimum slope among all such lint scg- 

IIICII~. WC will show that I has ncgativc slope. that 1 must 

intcracct V. ;md that I dots not intcrscct any of the horium- 

tal or vcrlical scgmcnts in the S’(p)-staircase bctwccn /J, 

md 1~~. This is sufficient to prove the lcnm~. 

SU~~OSC that I has ncgntivc slope and crosses h. 

t’onsidcr the first vertical scgmcnt of the S’(p)-staircase 

Ih;rt I crosses below its intcrscction with h. If this is V. then 

WC arc done. Olhcrwisc, cull this vertical .scg!ncnt v,. and 

Id ,I , bc hc point in S’(I)) incident to v, . WC will show 

1h;11 11 l is vibiblc lo ,J. 

/ LH 

Figure 2.2. The .sct S(p) and the staircase. 

Suppose J’, is not visible 10 p. Then some obstacle 

lint scgrncnc I’ crosses ,,1,,. WC know that 1’ cannot cross - 
pp,. It cannot inlcrsect h. by the choice of 1. It cannot 

cross I, since I is an obstacle lint scgmcnt. Thcrcforc, I’ 

hus an endpoint r which is in a region whose boundary 

points arc all not I-dominated by any point in ITCH. 

Since r I-dominates some of these boundary points, r can- 

not exist. Thcrcforc, p3 is visible to p, hcncc is in S(p). If 

p3 has a lower y-coordinate than p2, then pz is not visible 

to p, which is a contradiction. Otherwise, p, and p2 are 

not consccutivc points in S(p), also a contradiction. Thcre- 

fort, I intcrsccts the S’(p)-staircase for the first time at v. 

The lemma follows, for the cast where f has ncgativc slope 

and crosses h. 

If I has positive slope and crosses h. then cithcr it has 

an endpoint which is in a region all of whose points arc not 

I-dominated, or clsc I crosses cithcr the x or y axis, and 

cithcr p, or p2 arc not visible to p. These arc contradic- 

t ions. 

Suppose that I touches /I but dots not cross h. Then 

the endpoint r of I on h is in S’(p). If r is p,. then WC arc 

done. If r is visible to p, then it must be p2, and WC arc 

done. If not, then there must bc an obstacle line scgmcnt 

that crosses 17. This line scgmcnt cannot cross px or h, 
and hcncc has an endpoint in a region all of whose points 

arc not I-dominated. l 

For each p c v. thcrc arc staircase structures in the 

second, third, and fourth quadrants of C(p) similar to the 

staircase structure in the first quadrant dcfincd by S@). 

Thcsc four staircase structures in the four quadrants of 

C@) dcfinc a region (which may bc unbounded ) whose 

interior contains exactly one point in v, namely the point p. 
Thus a path from p to (I must intcrscct one of the four 

staircase structures corresponding to p. 

Using the staircase structures WC can show that if a 

shortest Ll path bctwccn s and I crosses the staircax 
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Figure 2.4. A path from p to 4 for Cast 2. 

Figure 2.3. A path from p to y for Case I. 

structure and passes through p then it can be modified to 

pass through the points in S@). This leads to the following 

lemma about the graph E(p,E). 

Lemma 2.2. Let p and 9 be points in p. Then a shor- --- 
test path from p to 9 in V/S(V,E) defines a shortest L , path 

from p to q which avoids all obstacles. 

Proof. Consider a shortest path from p to 4 which 

avoids all obstacles. This path must intersect one of the 

four staircase structures corresponding to p. Suppose the 

path first crosses the staircase structure defined by S(p) in 

the first quadrant. (The other three cases are symmetrical). 

The path crosses the staircase across either a vertical or 

horizontal line segment originating from a point in S(p), 

say pI. and can be altered to pass through the point p,, 

without changing. length of the path. The path from p, to 

4 can be similarly altered without changing the length of 

the path. This procedure is finite since no point (vertex) 

will be repeated in the modified path being constructed. 

The end result is a path from p to 9 in which we travel in a 

straight line between a pair of adjacent vertices in the path. 

Furthermore, the final path corresponds to a path between 

p and 9 in @v,i). n 

We shall now describe the relationship between --- 
VIS(V,E) and V/S(V,E). Let q be a point in S@). Con- 

sider the rectangle ,Rpy formed by 4 and p at the diagonal 

endpoints. Let Rpy include all of the points in its interior. 

We note that none of the obstacle line segments can ter- 

minate in the rectangle R,. If there were an obstacle line 

segment which terminated in RPu, then there would be a 

point in V (I w@)\{y} which would I-dominate 4. and 

since 4 is in the set S@) this cannot happen. The shortest 

path between p and 4 in VlS(V,E) depends on whether the 

line segments LH and Ly do or do not intersect the rectangle 

R,,,,. There are two cases. 

Case 1. Neither L, nor L, intcrscct the rectangle Rpy. 
In this cast the rectangle Ryy is contained in the region 

a@). Also, none of the obstacle line segments can ter- 

minate in the region RN. Therefore, none of the obstacle 

line segm:nts intersect the rectangle Rpy. Consider a verti- 

cal line L which crosses the rectangle. Let p’ and 9’ be 

the horizontal projections of p and 9 onto this vertical line. 

The construction in section 3 ensures that VfS(V,E) con- 

tains the Steiner points p’ and 9’. together with horizontal 

paths from p to p’ and 4 to 9’, and a yertical path from p’ 

to q’, for some suitable vertical line L. This gives a path 

in VIS( V,E) from p to 4 of the same L , length as the 

straight line path from p to 9. This path is illustrated in 

Figure 2.3. 

Case 2. At lcast one of L,, and Ly intersects the rec- 

tangle RI,,, . 
Suppose LH intersects the rectangle Rpy. (The case when Ly 
intersects R,,,, is similar). Let p’ and q’ be the projections 

of p and 9 onto LH. Then p’ is visible from p. and we 

shall show that the vertical line through 9 intersects L,, and 

that 9’ is visible from q. The construction in section 3 

ensures that in VlS(V.E) there is is a horizontal path from 

p to p’, a vertical path from 9 to 4’) and a path along the 

line segment L,., from p’ to 9’. Thus in VIS (V,E) there is 

a path from p to 9 of the same L, length as the straight line 

path from p to 9. Such a path is illustrated in Figure 2.4. 

It remains to be shown that q’ exists and is visible from 9. 

We note that 15,, cannot terminate in the region R,,,,. If ~5.” 

is the x-axis of C(p) then & and the vertical line through 4 

must intersect. If LH is not the x-axis of C(p) then LH 

must intersect the interior of the first quadrant of C(p) and 

thereby must intersect the interior of RN, and since Ln can- 

not terminate in R,, the vertical line through 4 must inter- 

sect L”. So 4’ exists. Furthermore, if an obstacle line seg- 

ment intersects the segment 97 then it must terminate in 

R,,,,, which also cannot happen as noted earlier. So 9’ must 

be visible from 4. 

These considerations immediately give the following 

lemma. 

Lcmma 2.3. Let p and 4 be points in V. Then a shor- 

test path from p to 4 in V/S(V,E) defines a shortest L, path 



Figure 3. I. The horizontal and vertical projections of p, 

from p to y which avoids all obstacles. 

3. Construction of V/S (V. E) * 

In this section. the Steiner points and the edges of 

V/S(V,E) arc spccificd, and an algorithm is given for the 

construction of V/S(V.E). The specification of V/S(V.E) 
will imply that the requirements in Case I and Case- 2 in 

section 2 are satisfied, so that Lemma 2.3 holds. Also, the 

construction of VfS(V,E) will be shown to require 

O(n(logn)*) time. For simplicity we shall assume that each 

obstacle has non-zero area. The vertex set V will consist of 

all the vertices in V plus some Steiner points. 

There are two types of Steiner points in V. One type 
is suggested by Case 2 in section 2: for any endpoint p of a 

given obstacle line segment, include in V the horizontal and 

vertical projections of p onto visible obstacle line segments, 

as in Figure 3. I. Let p’, pD, #, and pR denote these pro- 

jections up, down, left, and right of p. respectively. 

lncludc in E edges between p and each of these (at most) 

four points. For each obstacle line segment e, there is a 

linear ordering on the vertices in V which lie on e. and we 

include in E edges bctwcen vertices in V n c that arc adja- 

cent. These Stcincr points, and the associated edges, are 

exactly those required by Case 2. We shall denote Steiner 

points which are projections of endpoints onto obstacle line 

segments as type 2 Steiner points. Note that there are O(n) 

type 2 Steiner points. 

To include in V/S(V,&) Steiner points that are 

appropriate for Case I in section 2, the following recursive 

construction is employed: let x,,, denote the median of the 

x-coordinates of the obstacle line segment endpoints. For 

Figure 3.2. Type 1 Steiner points on line x =x,,,. 

each endpoint p, include in V the Steiner point p’=(x,,pY). 

if that point is visible to p. (For example, if px-Q,,, and 

P,R>XlW then p’ will be included in V.) For each endpoint p 

and each such Steiner point p’, include in E an edge 

between p and p’. Apply this construction recursively for 

the endpoints with x-coordinates less than x,,,, and for those 

with x-coordinates greater than x,,,. A similar construction 

is also applied using the y-coordinates of the endpoints. 

After finding all Steiner points, we include edges burwccn 

vertices with the same x (y) coordinate as follows. For all 

of the vertices V’ in V with the same x (or y) co-ordinate, 

include in E edges between adjacent (consecutive) vertices 

in V’ that are visible to each other (see Figure 3.2). This 

construction ensures that for any two endpoints, there is an 1 
appropriate line L between the two, as required in Case I, 

together with the necessary Steiner points and edges. These 

Steiner points, which are projections of endpoints onto 

non-obstacle vertical and horizontal lines, will be called 

type I Steiner points. Observe that at a recursive step, 

O(n) type I Steiner points are introduced, so that 

O(nlog n) type I Steiner points are included in V by this 

construction. Note also that the given construction 

describes an algorithm for computing the type I Steiner 

points in O(nlog n) time, once the type 2 Steiner points are 

available. 

This complctcs the specification of V/S(V,E). We 
note that in the above construction of V/S(V,E) s and I arc 

treated just like endpoints, so s and I are also projected and 

there are Steiner points corresponding to s and 1. Also, 

note that there are O(nlog n) vertices in V. It may be 

helpful in understanding the construction to note that for 

each endpoint p, the Steiner points associated with p are on - P 
the segments pLp” and pDp”, and there are O(log n) such 
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Steiner points. The Steiner points on p’.p’ thus have y- 

coordinate p!, and the x-coordinates of such points arc X- 

coordinates of some endpoints. Similarly, the Stcincr points -. 
on p”p” have x-coordinate pr, and the y-coordinates of 

such points are the y-coordinates of some endpoints. 

The following lemma is implied by the above discus- 

sion, together with the observation that there are O(j) 

edges incident to any Steiner point, and O(log n) edges 

incident on obstacle line segment endpoints. 

Lemma 3.1. The graph V/S(V,E) has O(nlog n) ver- 

tices and edges. 

It remains to describe an algorithm for constructing 

V/S(V,E). The algorithm begins with a standard sweep 

line technique. Type 2 Steiner points may be obtained in 

O(n log n) time by first sweeping the obstacles by a hor- 

izontal line, and then by a vertical line. During each sweep 

the projections onto an obstacle line segment arc generated 

in order, and at the end of the two sweeps an ordered list 

of the Steiner points on an obstacle line segment may 

obtained by merging two ordered lists. This ordered list 

readily gives the edges of ViS(V.E) between the Steiner 

points on each obstacle line segment. 

As noted above, the type I Steiner doints may be 

generated by the recursive procedure described above. The 

ordering of the vertices on each dividing line (such as 

X=X,) is readily determined via sorting in O(n(log n)‘). 

The visibility relations among the vertices on the same hor- 

izontal or vertical line, and hence the edges between such 

vertices, are also readily determined in O(n(log n)*) time 

using a sweeping lint: as a line sweeps through the obsta- 

cles, the intersection order of the obstacle line segments is 

maintained using a binary search tree. In addition to pcc- 

forming updates at line scgmcnt endpoints, the search tree 

is used to determine, for each vertex, the interval between 

obstacles, vn a horizontal or vertical line, that contains the 

vcrtcx. This yields the necessary visibility rclutions, and 

requires 0 (log n) time per vertex. 

From this discussion we have: 

Lemma 3.2. The graph V/S(V,E) can be found in 

O(n(log n)‘) time. 

4. The Three-Dimensional Case 

In this section we consider finding a shortest L, path 

in three dimensions between points s and t among three- 

dimensional non-intersecting rectilinear obstacles. Each 

obstacle may be a union of boxes (which may intersect) 

with sides parallel to the coordinate axes. 

WC next show that there is a shortest (L,) path from 

s to I which passes through the vcrticcs of the obstacles and 

an additional set of points added onto the cdgcs on the 

boundaries of the obstacles. Let n be the number of obsta- 

cle vertices. and let (z,,zz,zl, . .zn), (y,,yr. . . . ,y,) 

and (xI.xz. a ,x,) be the z. y and x co-ordinates of the 

endpoints of the obstacles and of s and I. The additional 

set of points is obtained by intersecting the obstacles with 

the planesz=t,, z=zz , . . . , z=z,,y=y,, y=y, , . . , 

‘y =yn and x=x,, x=x2 , . . . , x=x,. The number of such 

points is O(n*). We let V denote the set of the vertices of 

the obstacles, together with these extra O(n’) points. As 

in the planar case, we can define a set S(p) of vertices 

related to p, such that a shortest path from any point to p 

can be altered to pass through vertices in S(p). Let C,,,, 

denote the rectilinear box with p and 9 at opposite diago- 

nals. The additional vertices that lie on the edges of the 

obstacles ensure that for any vertex 9 in S(p), the box C, 

intersects the obstacles only at p and q, as in Case 1 for the 

planar algorithm. (The analog of case 2 cannot occur for 

rectilinear obstacles.) Thus one only needs to ensure that 

there is a rectilinear path (in the constructed graph) from p 
to vertices in S(p). A Steiner point construction, sketched 

below, will establish the existence of such paths. This con- 

struction will ensure that there will be a plant, which passes 

through C,, onto which p and 9 are projected to obtain 

Steiner points. On this plane, a shortest path between the 

projections can be established using the planar Stcincr point 

construction. 

We actually construct a graph among the three- 

dimensional points. First, Steiner points are added to the 

set of vertices V to form a set V’. Each point p in V is pro- 

jected along the z-axis in both the positive and the negative 

direction until it strikes an obstacle. These projected points, 

say p, and p,, are added to the set of vertices as Steiner 

points. These projections can be found in O(n*(log n)*) 

operations by doing a line sweep on a x-z plant along the 

z axis for each of the O(n) planes corresponding to the 

O(n) y-coordinate values. The next set of Steiner points is 

obtained recursively as follows. Let P,, bc the plane z =z,,, 

perpendicular to the z axis, where z, is the median of the z 

coordinate values of the vertices in V. The points on either 

side of this plane arc projected onto this plane P,,. The 

projection of a point p is obtained by intersecting the line 

px with the P,. Moreover, the edges and the Steiner 

points among the points on the plane P,, are added using 

the planar algorithm. The above procedure is repeated for 

the vertices on either side of the plane P,,. The number of 

vertices and edges on the plane P, is O(n*log n) and can 

be generated in O(n’(log n)*) time, as described in the pre- 

vious section. The entire recursive procedure generates a 

total of O(n*(log n)2) vertices and edges, and requires 

O(n*(log n)‘) time. The edges joining adjacent points - 
along the line IQ/I, are added after all the Steiner points 

have been introduced. by intersecting that lint with the 

median plants ohtaincd by the rccursivc proccdurc dcfincd 
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above There arc Otlog n) such cdgcs per vcrtcx of V, giv- 
ing a total of Utrt’log II) such edges. This complctcs the 

spwificatwn of the addition of the edges. Now a shortest 

L, path fro& s to I can be found in this graph in 

O(rr’tlog r~)~) time, using Dijkstra’s shortest path algo- 

rithm. IDI 

We have sketched the proof of the following: 

Lemma 4.1. Given rectilinear obstacles in three 

dimensions with n vertices, a shortest Lt path between 

grven points s and t can he found in O(n’(log n)‘) time. 

5. Conclusion 

We have described an O(n(log n)‘) algorithm for 

finding a shortest rectilinear path from s to I through simple 

polygonal obstacles, where n is the number of vertices on 

the obstacles. These ideas also led to an algorithm for 

shortest paths in three dimensions through rectilinear obsta- 

cles. 
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