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Abstract

The problem of finding a rectilincar shortest path
amongst obstacles may be stated as follows: Given a set of
obstacles in the plane find a shortest rectilinear (L,) path
from a point s to a point ¢ which avoids all obstacles. The
path may touch an obstacle but may not cross an obstacle.
We study the rectilinear shortest path problem for the case
where the obstacles are non-intersecting simple polygons,
and present an O (n(logn)?) algorithm for finding such a
path, where n is the number of vertices of the obstacles.
We also study the case of rectilinear obstacles in three
dimensions, and show that L, shortest paths can be found
in O (n?(log n)*) time.

1. Introduction

In this paper we consider the problem of finding rec-
tilincar (L) shortest paths between points when there may
be obstacles present. The problem may be formulated as
follows: Given a set of obstacles in the planc find a shortest
rectilinear (L,) path from a point s to a point ¢ which
avoids all obstacles. The path may touch an obstacle but
does not cross an obstacle. In {RLW] Rezende, Lee and
Wu study a version of this problem where the obstacles are
n rectangles with sides parallel to the coordinate axis. They
present an O (nlogn) algorithm for constructing the optimal
path. Other shortest path problems have been studied in
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|LPW], |LP} where the metric used is Euclidean. Larson
and Li [LL] studied a similar problem of finding all
minimal distance rectilinear paths among a set of m sourcc-
destination pairs in the plane with polygonal obstacles. The
algorithm in [LL} runs in O(m(m®+n?)) time where 2 is
the number of vertices of the obstacles, and m is the
number of source-destination pairs.

We shall describe an algorithm for finding a shortest
rectilinear (L) path between s and t for the case where the
obstacles are non-intersecting simple polygons (thc polygons
may touch at vertices). The algorithm runs in O(n(logn)?)
time where n is the number of line segments defining the
boundary of the simple polygonal obstacles. The input is
given as a collection of n line segments which may intersect
only at endpoints, and for each line segment it is known
whether the interior of an obstacle (if any) lies to the left
or the right of the segment. We shall refer to the given
bne segments as obstacle line segments. To simplify the
presentation we shall assume that each obstacle has non-
zcro area. The algorithm described can be easily modified
to handle obstacles which have zero arca.

The rectilinear (L,) shortest path algorithm proceeds
by constructing a weighted visibility graph VIS(V,E) whose
vertices are points on the plane which include the points ¥
and 1, the 2n endpoints of the given linc segments, and
some additional points called Steiner points. Each vertex v
is connccted to some of the vertices visible from v. The
weight of an edge (u,v) is the L, distance between u and v.
The purpose of introducing Stciner points is to rcduce the
number of edges in the graph VIS(V,E) to O (nlogn). Find-
ing a shortest path between s and ¢t in the graph VIS(V,E)
gives a rectilinear shortest path between s and ¢ that avoids
all obstacles, and such a shortest path may bce found in
O (n (logn)®) time using Dijkstra’s shortest path algorithm.
ID]

How can adding more vertices to a graph allow it to
have fewer edges? The key idea is this: suppose that three
points p, ¢, and r have x-coordinates satisfying p,=<¢,<r,
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Figure 1.1. A path from p to r via ¢.

and y-coordinates satisfying p,<q,<r,. (Sce Figure 1.1)
Then the L, distance from p to r is the sum of the L, dis-
tance from p to ¢ and from ¢ to r. This implics that L,
distance information between a sct of points in the third
quadrant around ¢ and a sct of points in the first quadrant
around ¢ can be succinctly represented via paths through ¢.
Thus the addition of Steiner points positioned like ¢ can
reduce the number of edges necessary in a visibility graph.
This idea has been used previously by Guibad and Stolfi for
minimum spanning trees under the L, metric. [GS})

In section 2 we describe the visibility graph
VIS(V,E), and show that finding a shortest path in
VIS(V,E) does give a shortest L; path that avoids all obsta-
cles. In the third section we describe how to add Steiner
points and construct the graph VIS(V,E). Finally, in sec-
tion 4 we describe how the algorithm can be extended to
find a shortest rectilinear path in three dimensions when the
obstacles are rectilinear objects with sides parallel to the
coordinate axis.

2. The Visibility Graph VIS (V,E)

In this section we describe a weighted visibility graph
PE(V.E), where V is the set of points comprising the points
s and ¢, and the (at most) 2n cndpoints of the obstacle line
segments. The weight of an cdge in E is the L, distance
between its two endpoints. If an edge (p, ¢) is in E then 4
and g are visible from each other, but the converse does not
always hold. A shortest path between s and ¢ in the graph
VTS‘(‘-/.E) gives a shortest L, path between s and ¢ which
avoids all obstacles. However ‘_’75(‘_/,5) may have {i(n?)
cdges, so we actually construct a sparse visibility graph
VIS(V.E) whose vertices consist of all the points in %
together with some extra Steiner points.  For cach cdge
(p.g) in lTS(l_/,E). there is a path of the same L, length
between p and g in VIS(V,E).

We shall define some notation, A point ¢ is said to

be visible from point p iff the straight line joining ¢ to p
does not intersect the interior of an obstacle. We let p, and
p, denote the x and y co-ordinates of a point p. Let C(p)
denote the translated coordinate system with p as the ori-
gin. The first quadrant of C(p) is the set of all points ¢
such that p, =g, and p, =gq,. Number the remaining qua-

. drants counterclockwise about p. The quadrants are closed
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regions, so a point on the vertical or the horizontal axis of
C(p) belongs to morc than one quadrant. We dcfine four
different kinds of dominance relations among points, and
say that p i-dominates ¢ if ¢ is in quadrant { of C(p), for
i=1,2,3,4. A point g is said to be i-dominated by p iff
p i-dominates ¢.
The graph ﬁ(V,E) is defined as follows: the vertex
set V consists of the points s and ¢ and the (at most) 2n
We will
indicate the edges (p.gq) in WS’(V.E) when ¢ is in the first
quadrant of C(p). (The other edges arc defined symmetri-
cally.) To do this, the following definitions will be useful.

endpoints of the given n obstacle line scgments.

Let L, and L, denote the line segments or rays
defined as follows. As we move up from p along the y-axis
of C(p), Ly is the first obstacle line segment which inter-
sects the positive y-axis of C(p), and also intersects the
interior of the first quadrant of C(p). If there is no such
line segment, then L, is the vertical axis of C(p). As we
move right from p along the x-axis of C(p), Ly is the first
obstacle line segment which intersects the positive x-axis of
C(p), and also intersects the interior of the first quadrant
of C(p). If there is no such line segment, then Ly is the
horizontal axis of C(p).

Let m(p) denote the set of points in the first qua-
drant of C(p) that are not blocked from p by Ly or Ly.
That is, a point r in the first quadrant of C(p) is in w(p) if
and only if the line segment pr does not intersect Ly or Ly.
We include in w(p) all the points on the boundary of w(p)
except the point p itsclf. The region (p) is illustrated in
Figure 2.1,

For p,q(‘_’ and ¢ in the first quadrant of VIS(V,E),
an edge {p,q} is included in VIS(V,E) if and only if ¢ is in
a set S(p), which is defined as follows. A point g is in
S(p) if and only if both of the following hold.

1. There is no ¢’ €V such that ¢’ is in w(p) and ¢’ 1-

dominates g.

2. g is visible from p.

We will also need a set §'(p), whose definition fol-
lows that of S(p), with the removal of condition 2.

We will prove below that a shortest path in VE(\?,E)
between vertices in V is a shortest L, path that avoids all
obstacles. To prove this, a geometrical structure containing
S(p), called a staircase, will be uscful. Consider that
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Figure 2.1, The polygonal region m(p).

portion of the region w(p) which as visible from p, and is
not }-dominated by points in S(p). The boundary of this

region consists of points in the positive x and y axes of

C(p), points in Ly and Ly, and a scction containing the
points of §(p), which will be called a staircase. (Sce Fig-
urc 2.2.) On this staircase, the points in S(p) arc arranged
that
coordinate. We have the following lemma:

30 the y-coordinate decreases  with  increasing  x-

Lemma 2.1, Adjacent vertices (points) on the stair-
case arc connected by at most three line segments: first a
horizontal line scgmient, then a line segment with negative
slope, and finally a vertical line segment.

Proof. Consider that subscet of the region w(p) that is
not 1-dominated by points in $'(p). The boundary of this
subsct of ww(p) consists of portions of the x and y axes, por-
tons of L, and Ly, and also of a collection of alternating
vertical and  horizontal line segments incident 1o S'(p).
Call the fatter collection the §'(p)-staircase.  Suppose that
pyoand pyoare consccutive vertices in S{p). Consider that
portion of the §'(p)-staircase between p, and p,. Let i be
the horizontal scgment incident to g7, and let v be the verti-
cal scgment mcident to p,. Let ¢ be the obstacle line seg-
ment whose intersection with h has smallest x coordinate n
Cip). and has minimum slope among all such line seg-
ments. We will show that [ has negative slope, that | must
mterseet v, and that [ does not intersect any of the horizon-
tal or vertical segments in the ' (p)-staircasc between p,
and p,. This is sufficient to prove the lemma.

Supposc that I has negative slope and crosses h.
Consider the first vertical segment of the S (p)-staircase
If this is v, then
we are done. Otherwise, call this vertical segment v, and

that / crosses below its intersection with A.

let py be the point in S'(p) mcident to v,. We will show
that py 15 visible to p.
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Sipy={1,2,3}
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Figurc 2.2. The set S(p) and the staircase.

Suppuse p, is not visible to p. Then some obstacle
line segment I crosses pFZ We know that I cannot cross
,—;FT. It cannot intersect h, by the choice of I. It cannot
cross I, since I is an obstacle line segment. Therefore, !
has an cndpoint r which is in a region whosc boundary
points arc all not l-dominated by any point in w(p)(}V.
Since r 1-dominates some of these boundary points, r can-
not exist. Therefore, py is visible to p, hence is in S(p). If
p3 has a lower y-coordinate than p,, then p, is not visible
to p, which is a contradiction. Otherwise, p, and p, are
not consecutive points in S(p), also a contradiction. There-
fore, { intersects the $'(p)-staircase for the first time at v.
The lemma follows, for the case where ! has negative slope
and crosses h.

If [ has positive slope and crosses f, then cither it has
an endpoint which is in a region afl of whosc points arc not
I-dominated, or clse ! crosses either the x or y axis, and
cither p, or p, are not visible to p. These are contradic-
tions.

Suppose that { touches A but does not cross h. Then
the endpoint r of Lon his in S (p). If ris p,, then we are
done. M r s visible to p, then it must be p,, and we arc
done. If not, then there must be an obstacle line segment
that crosses pr. This line scgment cannot cross pp, or h,
and henee has an cndpoint in a region all of whose points
are not I-dominated. ®

For cach p € V. there arc staircasc structurcs in the
second, third, and fourth quadrants of C(p) similar to the
staircase structurc in the first quadrant defined by S(p).
These four staircase structures in the four quadrants of
C(p) dcfinc a region (which may bc unbounded ) whose
interior contains cxactly one point in v, namecly the point p.
Thus a path from p to ¢ must intersect onc of the four
staircase structures corresponding to p.

Using the staircase structurcs we can show that if a
shortest L, path between s and ¢ crosses the staircase
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Figure 2.3. A path from p to ¢ for Case 1.

structure and passes through p then it can be modified to
pass through the points in S(p). This leads to the following
lemma about the graph VIS(V,E).

Lemma 2.2. Let p and g be points in V. Then a shor-

test path from p to ¢ in VIS(V,E) defines a shortest L, path
from p to g which avoids all obstacles.

Proof. Consider a shortest path from p to ¢ which
avoids all obstacles. This path must intersect one of the
four staircase structures corresponding to p. Suppose the

path first crosses the staircase structure defined by S(p) in

the first quadrant. (The other threc cascs are symmetrical).
The path crosses the staircase across cither a vertical or
horizontal line segment originating from a point in S(p),
say p,, and can bc altered to pass through the point p,
without changing. length of the path. The path from p, to
g can be similarly altered without changing the length of
the path. This procedure is finite since no point (vertex)
will be repeated in the modified path being constructed.
The end result is a path from p to g in which we travel in a
straight line between a pair of adjacent vertices in the path.
Furthermore, the final path corresponds to a path between
pand g in VE(V,E). ]

We shall now describe the relationship between
VIS(V,E) and VIS(V,E). Let q be a point in S(p). Con-
sider the rectangle R, formed by ¢ and p at the diagonal
endpoints. Let R,, include all of the points in its interior.
We note that none of the obstacle line segments can ter-
minate in the rectangle R,,. If there were an obstacle line
scgment which terminated in R,,, then there would be a
point in Vn‘rr(p)\{q} which would t-dominate ¢, and
since ¢ is in the set S(p) this cannot happen. The shortest
path between p and ¢ in VIS (V,E) depends on whether the
line segments Ly and Ly do or do not intersect the rectangle

R,,. There are two cases.

Case 1. Neither Ly nor Ly intersect the rectangle R,
In this case the rectangle R, is contained in the region
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Figurc 2.4. A path from p to ¢ for Case 2.

w(p). Also, none of the obstacle line segments can ter-
minate in the region R, . Therefore, none of the obstacle
line segments intersect the rectangle R,,. Consider a verti-
cal line L which crosses the rectangle. Let p’' and ¢’ be
the horizontal projections of p and ¢ onto this vertical line.
The construction in section 3 ensures that VIS(V,E) con-
tains the Steiner points p’ and ¢, together with horizontal
paths from pto p’ and gto ¢', and a vertical path from p'
to q', for some suitable vertical line L. This gives a path
in VIS(V,E) from p to ¢q of the same L, length as the
straight line path from p to ¢q. This path is illustrated in
Figure 2.3.

Case 2. At lcast onc of Ly and L, intersects the rec-
tangle R,,,.
Suppose Ly, intersects the rectangle R,,. (The case when Ly
intersects R,, is similar). Let p’ and ¢’ be the projections
of p and ¢ onto Ly. Then p’ is visible from p, and we
shall show that the vertical line through ¢ intersects Ly, and
that ¢’ is visiblc from ¢q. The construction in section 3
ensures that in VIS(V,E) there is is a horizontal path from
ptop’, a vertical path from g to q¢’, and a path along the
line segment L, from p’ to g’. Thus in VIS (V,E) there is
a path from p to q of the same L, length as the straight line
path from p to q. Such a path is illustrated in Figure 2.4.
It remains to be shown that ¢’ exists and is visible from q.
We note that L, cannot terminate in the region R,,. If Ly
is the x-axis of C(p) then Ly and the vertical line through ¢
must intersect. If Ly is not the x-axis of C(p) then Ly
must intersect the interior of the first quadrant of C(p) and
thereby must intersect the interior of R, , and since L, can-
not terminate in R,,, the vertical line through ¢ must inter-
sect Ly. So ¢’ exists. Furthermore, if an obstacle line seg-
ment intersects the segment gg° then it must terminate in
R,,, which also cannot happen as noted carlier. So ¢ must
be visible from g¢.

These considerations immediately give the following
lemma.

Lemma 2.3. Let p and g be points in V. Then a shor-
test path from p to ¢ in VIS(V,E) defines a shortest L, path



Figure 3.1. The horizontal and vertical projections of p.

from p to ¢ which avoids all obstacles.

3. Construction of VIS(V,E) ’

In this section, the Steiner points and the edges of
VIS(V,E) are specified, and an algorithm is given for the
construction of VIS(V,E). The specification of VIS(V,E)
will imply that the requirements in Case | and Case 2 in
section 2 are satisfied, so that Lemma 2.3 holds. Also, the
construction of VIS(V,E) will be shown to require
O (n(logn)?) time. For simplicity we shall assume that each
obstacle has non-zero area. The vertex set V will consist of
all the vertices in V plus some Steiner points.

There are two types of Steiner points in V. One type
is suggested by Case 2 in section 2: for any cndpoint p of a
given obstacle line segment, include in V the horizontal and
vertical projections of p onto visible obstacle linc segments,
as in Figure 3.1. Let pY, p?, p*, and p* denote these pro-
jections up, down, left, and right of p, respectively.
Include in £ cdges between p and cach of these (at most)
four points. For cach obstacle line segment e, there is a
linear ordering on the vertices in V which lie on e, and we
include in £ edges between vertices in V (1) e that arc adja-
cent. These Steiner points, and the associated edges, are
cxactly those required by Case 2. We shall denote Steiner
points which are projections of endpoints onto obstacle line
segments as type 2 Steiner points. Note that there are O (n)
type 2 Steiner points.

To include in VIS(V,E) Steiner points that are
appropriate for Case | in section 2, the following recursive
construction is employed: let x,, denote the median of the
x-coordinates of the obstacle line segment endpoints. For
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Figure 3.2. Type 1 Steiner points on line x =x,,.

each endpoint p, include in V the Steiner point p’'=(x,.p,},
if that point is visible to p. (For example, if p,<x, and
pR>x,, then p’ will be included in V.) For each endpoint p
and each such Steiner point p’, include in E an edge
between p and p’. Apply this construction recursively for
the endpoints with x-coordinates less than x,,, and for thosc
with x-coordinatcs greater than x,. A similar construction
is also applicd using the y-coordinates of thc endpoints.
After finding all Steiner points, we include edges beiween
vertices with the same x (y) coordinate as follows. For all
of the vertices V’ in V with the same x (or y) co-ordinate,
include in E edges between adjacent (consecutive) vertices
in V' that are visible to each other (see Figure 3.2). This
construction ensures that for any two endpoints, there is an
appropriate line L between the two, as required in Case 1,
together with the necessary Steiner points and edges. These
Steiner points, which are projections of endpoints onto
non-obstacle vertical and horizontal lines, will be called
type | Steiner points. Observe that at a recursive step,
O(n) type | Steiner points are introduced, so that
O(nlog n) type | Steiner points are included in V by this
construction. Note also that the given construction
describes an algorithm for computing the type | Steiner
points in O (nlog n) time, once the type 2 Stciner points are
available.

This completes the specification of VIS(V,E). We
note that in the above construction of VIS(V,E) s and ¢ are
treated just like endpoints, so s and r are also projected and
there are Steiner points corresponding to s and f.  Also,
note that there are O(nlog n) vertices in V. It may be
helpful in understanding the construction to note that for
each endpoint p, the Steiner points associated with p are on
the segments ptp* and p®p?, and there are O (log n) such




Steiner points. The Steiner points on p'p® thus have y-
coordinate p,, and the x-coordinates of such points arc x-
coordinates of some endpoints. Similarly, the Steiner points

on pPpY have x-coordinate p,, and the y-coordinates of
such points are the y-coordinates of some endpoints.

The following lemma is implied by the above discus-
sion, together with the observation that there are O(J)
cdges incident to any Steiner point, and O(log n) edges
incident on obstacle line segment endpoints.

Lemma 3.1. The graph VIS(V.E) has O(nlog n) ver-
tices and cdges.

It remains to describe an algorithm for constructing
VIS(V,E). The algorithm begins with a standard sweep
line technique. Type 2 Steiner points may be obtained in
O(nlog n) time by first sweeping the obstacles by a hor-
izontal line, and then by a vertical line. During each sweep
the projections onto an obstacle linc segment are gencrated
in order, and at the end of the two sweeps an ordered list
of the Steiner points on an obstacle line segment may
obtained by merging two ordered lists. This ordered list
readily gives the edges of VIS(V,E) between the Stciner
points on each obstacle line segment.

As noted above, the type 1 Steiner points may be
generated by the recursive procedure described above. The
ordering of the vertices on each dividing line (such as
x=x,) is readily determined via sorting in O (n(log n)?*).
The visibility relations among the vertices on the same hor-
izontal or vertical line, and hence the edges between such
vertices, arc also readily determined in O(a(log n)*) time
using a sweeping linc; as a line sweeps through the obsta-
cles, the intersection order of the obstacle line segments is
maintained using a binary scarch tree. In addition to per-
forming updatcs at line scgment endpoints, the search tree
is used to determine, for cach vertex, the interval between
obstacles, on a horizontal or vertical line, that contains the
vertex. This yields the necessary visibility relations, and
requires O (log n) time per vertex.

From this discussion we have:

Lemma 3.2. The graph VIS(V,E) can be found in
O(n(log n)?) time.

4. The Three-Dimensional Case

In this section we consider finding a shortest L, path
in threc dimensions between points s and 7 among three-
dimensional non-intersecting rectilinear obstacles. Each
obstacle may bc a union of boxes (which may intersect)
with sides paraliel to the coordinate axes.

We next show that there is a shortest (L,) path from
¥ 10 1 which passcs through the vertices of the obstacles and
an additional sct of points added onto the cedges on the
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boundaries of the obstacles. Let n be the number of obsta-
cle vertices, and let (z,,2z4,23, * " .20 (V1. ¥2, * * * \Ya)
and (x; x3, - - * ,x,) be the z, y and x co-ordinates of the
endpoints of the obstacles and of s and ¢. The additional
set of points is obtained by intersecting the obstacles with
the planes z =z, z=z, , "+, 2=2,, y=y,, Y=y2, ' " *,
y=y, and x=x;, x=x, , - -, x =x,. The number of such
points is O(n?). We let V denote the set of the vertices of
the obstacles, together with these extra O (n’) points. As
in the planar case, we can define a set §(p) of vertices
related to p, such that a shortest path from any point to p
can be altered to pass through vertices in S(p). Let Cpy
denote the rectilinear box with p and g at opposite diago-
nals. The additional vertices that lie on the edges of the
obstacles ensure that for any vertex g in S(p), the box C,,
intersects the obstacles only at p and g, as in Case 1 for the
planar algorithm. (The analog of case 2 cannot occur for
rectilinear obstacles.) Thus one only needs to ensure that
there is a rectilinear path (in the constructed graph) from p
to vertices in S(p). A Steiner point construction, sketched
below, will establish the existence of such paths. This con-
struction will easure that there will be a plane, which passes
through C,,, onto which p and g are projected to obtain
Steiner points. On this plane, a shortest path between the
projections can be established using the planar Steiner point
construction.

We actually construct a graph among the three-
dimensional points. First, Steiner points are added to the
set of vertices V to form a set V', Each point p in V is pro-
jected along the z-axis in both the positive and the negative
direction until it strikes an obstacle. These projected points,
say p, and p,, are added to the set of vertices as Steiner
points. These projections can be found in O(n%(log n)*)
operations by doing a line swecp on a x —z planc along the
z axis for cach of the O(n) plancs corresponding to the
O(n) y-coordinate values. The next sct of Steiner points is
obtained recursively as follows. Let P,, be the plane z =2z,
perpendicular to the z axis, where z,, is the median of the 2
coordinate values of the vertices in V. The points on either
side of this plane arc projected onto this plane £,,. The
projection of a point p is obtained by intersecting the line
pwp- with the P, Moreover, the edges and the Steiner
points among the points on the plane P, are added using
the planar algorithm. The above procedure is repeated for
the vertices on cither side of the plane P,,. The number of
vertices and edges on the plane P,, is O (n’log n) and can
be generated in O (n*(log n)*) time, as described in the pre-
vious section. The entire recursive procedurc generates a
total of O(n’(log n)*) vertices and edges, and requires
O(n?(log n)*) time. The edges joining adjacent points
along the linc pyp, arc added after all the Steiner points
have been introduced, by intersecting that line with the
median planes obtained by the recursive procedure defined




above There are O (log n) such edges per veriex of V, giv-
ing a total of O(n’log n) such edges. This completes the
specification of the addition of the edges. Now a shortest
L, path from s to 1 can be found in this graph in
O(n*dlog m)*) time, using Dijkstra’s shortest path algo-

We have sketched the proof of the following:

Lemma 4.1. Given rectilinear obstacles in three
dimensions with n vertices, a shortest L; path between
given points s and 7 can be found in O (n*(log n)*) time.

S. Conclusion

We have described an O(n(log n)?) algorithm for
finding a shortest rectilinear path from s to ¢ through simple
polygonal obstacles, where n is the number of vertices on
the obstacles. These ideas also led to an algorithm for
shortest paths in three dimensions through rectilinear obsta-
cles.
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