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Abstract 

We investigate the question of (storage) space - (retrieval) 
time tradeoff for orthogonal range queries on a static data- 
base. Lower hounds on the product of retrieval time and 
storage space are obtained in the arithmetic and tree 
models. 

1. Introduction 

Consider a data base that contains a collection of 
records, each with a key and a number of data Bclds. 
Given a range query, which is specified by a set of con- 
straints on the keys, the data base system is expected to 
return the set of records, or a function of the set of records 
whose keys satisfy aI1 the constraints. If the data base is 
static the collection of records may be preprocessed to 
achieve a balance between the storage utilised and the time 
required to answer a query. There is an extensive literature 
[l, 2, 3, 7, 8, 9, IO] on algorithms for range query, and the 
space and time requirements have traditionally been used 

as performance measures for such algorithms. In this 
paper, we investigate the question of (storage) space - 
(retrieval) time tradeoff for orthogonal range queries on a 
static database. 

Let G be a commutative semigroup with an addition 
operation +. Let d be a fixed positive integer. Let 
N = {I .2 ,...., n} and let Nd denote the set of all d-tuples of 
positive integers less than or equal to n. A record (k,!(k)) 
is a pair of key kENd and datum /(k)EG. The data base 
consists of n such records. Let k =(k,,k, ,.,.., kd). An 

ortbogonal range query is specified by a 2d-tuple 
Q =(~,~,~,2’~*,,~~?? . . . . ,z d,,zdz) of positive integers satisfying 

a;, cq.2 9 lSi5d, or alternately, the query region is a 

parallelepiped (box) 6, defined by the Product 
lz,*12,2) x 1%,,%2) x **a’ x [;td,,zd2) of d-semiclosed intcr- 
vals with positive integer endpoints. We consider two types 
of response to such a query, one wbere the output is the 
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semigroup sum of the data I(k) whose key k are located in 
the query parallelepiped (box) 6, and the other where the 
output is the list of records whose keys lie in the query 
parallelepiped b. We use Q(b) to denote the input, tuple Q 
corresponding to query region b, and K to denote the set of 
keys in the database. 

A space-time tradeolf seeks to answer questions like 
what is the minimum amount of storage needed to ensure a 
certain query time. In the orthogonal range query problem 
the set of qurry regions is Gxed. The tradeoff between 
space and time is dependent on the model of data structure 
and the set of records in Ihe data base. We fix the data 
struct.ure model and tbcq try to obtain a set of records that 
makes this tradeoff as worse as possible. Thus the lower 
bounds on space-time products are to be intrepreted as 
worst case bounds, i.e. there exists a set, of n records whose 
space-time product has the said bounds. 

We study two models. In Model A, we work in the 
general framework defined by Fredman [4, 5, S], and con- 
sider only data structures and manipulation algorithms 
which are independent, of the choice of the semigroup G. 
So the set K of keys in the database together with the set 
of query regions completely specifies the problem. The 
model is an arithmetic model with unit cost for each arith- 
metic operation but no cost for memory retrieval. We only 
consider that type of response where the output is the semi- 
group sum of tbe data values whose keys lie in the query 
region. In this model, we show that for orthogonal range 
query on a static database with n records, there is a space- 
time tradeoff TS B n(n(logrn)d”) where 8~1 for 

d =2,3, and 0 =2 for d >3. Space-time tradeoffs lor circu- 
lar range query and interval query in this model are studied 
by Yao in [I I]. The complexity of dynamic range queries in 
this model is discussed by Fredmao in (4, 5, S]. 

In Model n (tree model), we study a broad class of 
rooted tree data structures. In this model, the data struc- 
tures are no longer independent of the choice of the semi- 
group G, and any correlation between the distributions of 
the given keys and the corresponding data values can be 
utilised to build more efficient data structures. We investi- 
gate two instances of orthogonal range query, the counting 
problem and the mozimum problem, where the output is a 
single element in the semigroup G. In the counting proh- 
lem, the response to a query is the number of keys located 
in the query parallelepiped. In the maximum problem, there 
is a linear ordering on the data values and the response to a 
query is the maximum of the data values whose keys lie in 
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the query parallelepiped. For the counting problem, for a 
static data base with n records, we show that there is a 
space-time tradeoff T S a fI( n (l~g~n)~*) where 8 = 1 for 
d =2,3 and 8 -2 for d>3. For the maximum problem, 
we show that (IogT + logl~gn)~- S 2 I?( n (10gn)~“) 
where 8 =1 for d =2,3, and 8 -2 for d >3. 

In Model B, we also investigate the reporting problem 
where the response to a query is the list of all the records 
whose keys are located in the query parallctepiped. For a 
set of records and a corresponding tlree data structure, let 
L(b) be the number of records whose keys lie in the query 
region b , let T(b) be the time required to answer the query 
corresponding to 6, and tet 

For the reporting problem we show that there is a space- 

time tradeoff (log?“+ toglogn)‘-’ ‘7” S z n(n (logn)d”), 
where 9 =I for d=2,3, and 9 =2 for d>3. 

2. An Overview 

2.1. Model A - Artthmctlc Model 

In this model 1, a data structure utilises an infinite 
array Z of variables zO,z,,zp,...., which stores elements from 
the commutative semigroup G. Given any input query, the 
query answering algorithm chooses a collection of at most 
m variables in the array and returns their semigroup sum 
as the response to the query. Since only arithmetic opera- 
tions are charged, the smallest possible m for which the 
query answering algorithm works correctly is the query 
time T. The data structure is assumed to be independent 
of the specific semigroup G and so the mapping between 
elements in G and variables in Z is drtermined solely by 
the set K of n keys in the data base. With each variable zi 
in Z is associated a subset hi of K and the data value 
kFh,l(k) is stored In zi, where j(k) is the data value asso- 

1 
ciated with k. Let H62K such that every set in H is asso- 
ciated with some variable in Z and every variable in Z is 
associated with some set in H. Let R be the set of all possi- 
ble query regions, and P(ff,T) be the property that for 
each b E R, bn K is expressible as the disjoint union of at 
most T sets in H. The query answcting algoritbm works 
correctly i6 P(H,T) is satisfied. For a set K of keys, tbe 
storage space S is defined by 

s= min 
H safi8/ging P(H,T) 

IHI. 

The following Theorem summarizes the results in this 
model. 

Theorem 1. In Model A, for orthogonal range query 
on a static database with n records, there is a space-time 
tradeog 2’S 2 fI(r~(logrn)~~) where B =I for d =2,3 and 
8=2 for d>3. 

The proof is based on Lemma 1 given below. The 
Lemma asserts that there exists a set K of n keys and a 
large enough set B( T,n) of query parallelepipeds such that 
the subsets of K induced by members of 8( T,n) satisfy cer- 
tain intersection conditions. The proof of Lemma 1 is given 
in Section 4. 

Lemma 1. There is a set K of n keys and a set 
B( T,n) of boxes satsfying the following properties. 

1. T ~OI[ T,n)l = f?(n(logrn)‘-e) where 8 - 1 for d =2,3 
and 8 =2 for d > 3. 

2. For distinct 6, ,b, E B(T,n), 

IhfltbmKl ~~minOb~n~I,lbznKl). 
Using property 2 in Lemma 1, we show that for any H 

satisfying P(H,T), we must have lHl> IB(T,n)l. Then 
Throrcm II follows from the lower bound on (B(‘i”,n)l given 
by proprrty I in Lemma 1. Let b,,b2 he distinct boxes in 
D( 7’,n). J\s b,n K is expressible as the union of at most T 
sets in If, there exists h,CH such that 

I~,! 2 (VT) IhnKl and hE(hnfo Since 

l(hnK)n PznWI < WW,nKL 4 cannot 
appear in the decomposition of b,n K as the union of 
members of if. So with each bi in B( T,n) we can associate 
a distinct hi in H. 

2.2. Model B - Tree Model 

In this model, the data structure is assumed to be a 
rooted tree. The set of tree vertices has a distinguished 
subset called data vertices, and each data vertex contains a 
data item which is an element in the commutative semi- 
group G. We let data(v) denote the data value stored in a 
vertex u. With each edge in the tree is associated a condi- 
tion, each condition being restricted to be a conjunction of 
binary comparisons. Given an input query in the form of a 
tupte of numbera, the query answering algorithm first visits 
the root. A vertex u is visited if3 it is a son of some vertex 
u that has already been visited and the input tupte satisfies 
the condition associated with edge UV. We define cond(u) 
to bc the conjunction of conditions on the path from the 
root to vertex u. For any query region 6, on being given 
the corresponding tuple &( 6) as input, the query answering 
algorithm .visits vertex u ill Q(b) satisfies cond(u). Finally, 
the response to a query is the semigroup sum of the data at 
all the visited data vertices. 

For a fixed tree, the query time is said to be T if T is 
the maximum of the numbers of data vertices visited by the 
query answering algorithm for all possible queries. For a 
fixed set of records, the storage space S is defined to be the 
minimum number of data vertices that a corresponding tree 
data structure must have in order to guarantee a query 
time of T. We note that the cost of traversing edges and 
evaluating the associated conditions is not included in the 
query time, and that there is no bound on the degree of 
any vertex. The tree model allows the data structure to 
depend on the’semigroup G and any correlation betwen the 
distributions of the given keys and the corresponding data 
values can be exploited to build a better dat.a structure. 

On the other hand, the tree nature of the data structure 
restricts the manner in which data locations may be 
accessed. 

In this model, we consider two iostances of orthogonal 
range query which we call the counting problem and the 
maximum problem. In the counting problem, the data 
value associated with each key is I, and the response to a 
query is the number of keys located in the query box. The 
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semigroup C is the semigroup on non-negative integers 
with the usual addition operation. For the maximum prob- 
lem, G is the semigroup on non-negative integers with the 
addition operation defined by z + g = max{z.y}. The 
rrsponsr to a query is t.he maximum of all the data values 
whosr krys arr lorat,rd in the qurry box. 

The results for the counting problem, are summarized 
by the following theorem. 

Theorem 2. In Model B, for the counting problem in a 
stat.ir database with n records, there is a space-time tra- 
deoff TS z f7(n(logTn)d-8) where 0 =l for d-2,3 and 
e=2 for d>3. 

The main lemma in the proof is stated below, we 
prove the lemma in Section 4. 

Lenrnra 2. Thrre is a set K of n keys and a set 
H( ?‘,n) of boxes sa&$ying the following properties. 

1. T IH( ?‘,n)l = f?(n(log,r~)~-” where 0 =l for d =2,3 
and 0 =2 for d >3. 

2. For distinct boxes b,,b, in B( T,n) and any vertex V, if 
both the input tuples &(a,) and Q(b2) satisfy cond(u) 
then there is a box b’ such that Q(b’) also satisfies 

cond(e)and Ib’nKI <+min(1b,nKI, lbznK)). 

Using property 2 in Lemma 2, we show that if the 
query time is T then the tree data structure must have at 
least, JB( T,n)l data vertices, and then the theorrm will fol- 
low from the lower bound on Io( ~,n)l given by property l 
in Lemma 2. For any box 6, since the query answering 
algorithm visits at most T data vertices with Q(b) as input, 
there is a visited data vertex v such that 
dafa(u)~ (l/T))bf’JK). Suppose for distinct boxes b,,b, 

in f?( T,n), there is a data vertex u such that both Q(b,) 

and Q(‘4 satisfy cond( u) and 
da~o(u)~(1/T)min((6,~KI,162nKl). Then ,bY 
Lemma 2 there is a box b’ such that Q(b’) satisfies cond(u) 
and Ib’n K I <dofo(u), so the query answering algorithm 
would work incorrectly with &(a’) as input. So with each 

box bi in fI( T,n) we can associate a distinct vertex ui such 
that Q(bi) satisfies cond(ui) and dola(ui) 2 (l/T) lbin K I. 

So the tree must have at least IB( Z’,n)l data vertices. 

For the maximum problem, we assume that the data 
values associated with all the keys in K are distinct. We 
then have the following Theorem. 

Theorem 3. In Model B, for the maximum problem in 
a static database with n records, we have a space-time tra- 
deoff (log?’ + loglogn)d-.’ S Z fI(n(logn)d-e) where 6 = 1 for 
d =2,3, and 0=2 for d >3. 

The main lemma in the proof is stated below, a proof 
of the lemma is given is Section 4. 

Lemma 3. For the maximum problem, there is a set 
h’ of n keys such that there exists K’s K satisfying the fol- 
lowing properties. 

1. ]K’I = fI( n/w(n)) where w(n)=1 for d =2,3,4, and 
w(n)=log,n for d >4. 

2. For each key k f K’ there is a set of boxes A(k) satisfy- 
ing conditions 2.1, 2.2, 2.3 and 2.4. 

2.1. 

2.2. 

2.3. 

The maximum data value in each box in A(k) 
is j(k). 

IA(k)l 2 1. 

L’ IA( ;~r c2 n(logn)d ’ where 8 =I for 
L c K’ 
d =2,3. and 8 =2 for d > 3, and c? is a con- 
stant dependent on d. 

2.4. For each data vertex u and each key k < K’, if 
data(u)=/(k) then the number of boxes in 
A(k) whose input tuplrs satisfy cond(w) is at 
most 6 where 
8 =(log,T+(d+S)log,log,n + d)d *. 

Ouce we have the above Lemma, we complete the 
proof as follows. For each box bCA(k), on being given 
o(b) as input, the query answering algorithm must visit a 
data vertrx u such that data(o)=/(k). So from Lemma 3. 
we can ronrlude that for each key k in K’, the correspond- 
ing data value /(k) is prrsrat in at least 8.’ IA( data 
vertirrs iu the tree, and since the data values associated 
with all the n keys are distinct, the number of data vertices 
is at least 6 ’ L$K, IA(k)1 which is n(6-l n(logn)d-B). 

2.3. Tree Model for the rcportlng problem 

The tree model defined in Section 2.2 is not suited for 
t.hc rrporsing problem because the degree of a vertex is 

unrestricted, and there is no cost for traversing edges. In 
such a model the reporting problem is solved optimally. 
Consider a tree with n+ 1 vertices, root of degree n, and a 
single distinct record in each leaf. The condition on the 
edge between a leaf and the root is a conjunction of com- 
pariyons which is true if and only if the query region con- 
tains the key whose record is in that leaf. Then any query 
visits only those data vertices which contain a record whose 
kry lies in the query region. 

So we restrict ourselves to trees where every vertex 
has degree less than some fixed constant (in fact letting the 
vertex degree be bounded by a slow growing function of n 
likr (logn)d is adequate). To compensate for the bounded 
drgree we allow the condition associated with each edge to 
be a disjunction of eorrparisons. Thus cond(v), the con- 
junction of the conditions on the path from the root to ver- 
tex e, is now a ronjunction of disjunctions. Moreover, for 
each data vertex V, dato(u) is an unstructured set of 
rrcords. We allow data vertices to share storage, so data(u) 
is in e&t the set of records acessed via data vertex V. 

Consider a fixed set of records and a fixed tree for the 
set of records. Let V(6) be the set of data vertices visited 
by thr query corresponding to query region 6. We only 
require that u dota be a auperaet of the set of 

UC b’(b) 
rrcords whose keys lie in the query region 6. So filtering 
search (21 is also included in this model. The time T(6) 
rcquircd to answer the query corresponding to 6 is lower 
hour&d by the number of vertices visited plus the size of 

u dafo(u). As T(b) is dependent on the output size it 
uC V(b) 
in not a correct measure of the overhead involved in 
answering the query rorresporrding to 6, so we define a 
sr&d query tirnr 7” as follows. Lrt L(b) be the number of 
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records whose keys are located iu b. 2” is said to be the 
scaled query time if 

For a fixed set of records, the storage S is defined 10 be the 
minimum number of data vertices a corresponding tree 
must have to ensure a scaled query time of T’. 

Theorem 4. In the tree model, for the reporting prob- 
lem, there is ispace-time tradeoff 
(IogT’ + Loglogn)d-* 7” S z f~( n (logn)d-8), where 0 = I for 
d---2,3, and B =2 for d>3. 

Tbe proof of Theorem 4 is lengthy and will appear in 
a detailed version of the paper. We also note that, in a tree 
model with restricted vertex degree and disjunctions of 
comparisons as conditions on edges, there are bounds aimi- 
lar to those in Theorem 4 for the maximum problem. 

3. Canonical pnrallclcplpcdr and almost uniform dlatrlbu- 
tionr 

We shall utilise a special class of parallelepipeds in 
obtaining the desired space-time tradeoffs. We assume that 
n is a power of 2 and let 
f~={[j2’+1,(j+I)2’+1):O~j<(n/2f)}. I,istheaet 
of intervals obtained by breaking up 11, n+ 1) into n /2’ 
semi-closed intervals of equal size, each interval being 
closed on the left and open Let 
I = ‘0 u 1, u *..a IJ ‘IO&*“. Then Id 

on the right. 
is defined to be the 

set of canonical parallelepipeds, or equivalently canonical 
boxes. 

(il ,i2 
For a box b, dimensions(b) defined to be the d-tupfe 
,....,id) where ii is the length of box b along the zj- 

axis, for 1 S j 5 d. We let C(u) deuote the set of all caoon- 
ical boxes of volume u and vol(b) the volume of a box 6. 
Let p(z) denote tbe smallest power of 2 greater than or 
equal to Z. Let J be the canonical parallelepiped 
J, x J, x . . . . x Jd-, where for OS ib d-l, 
Ji = (2i(2p(d))-‘n + 1, (2i+1)(2p(d))“n + 1). The fol- 
lowing lemmas list the properties of canonical boxes that 
we shall require. 

Lemma 4. Let b b 
a 

,, 2 ,...., b8 be canonical boxes of 

volume v such that n bi # 4 and b the smallest box con- 
i=l 

taioing each of b b ,, 2 ,...., 6,. Then 6 is a canonical box such 

that vol(6) 2 v 2&-‘, and VO~( /!I bi) s v 2’-P, where 

p = 8. 
i -4 

Lemma 5. Let v 2 IF’, 
1 C(v) ( s ( v-l n d( dlogpn - Iog2v + d),d-’ ). 

then 

We define E( V( T,n), r(T)) to be a largest vet of 
boxes satisfying the following conditions. 

1. Each box in E( V(T,n), r(T)) is a subbox of the 
canonical box J. 

2. Each box in E( V( T,n), r(T)) is a canonical box of 
volume V(T,n) and the intersection of any two boxes 
in E( V(T,n), r(T)) is a canonical box of volume at 
most ( V( T,n)/r( T)). 

. 

3. For each box b in E( V(T,n), r(T)), each dimension of 
b is at least r(T), anh every’cadod~cal box b’ such that 
dimenrionr(b’) - dimentione(b) and b’s J is also 
present in E( V( T,n), r(T)). 

Lemma 6. Let V(T,n) and r(T) take on values that 
are powers of 2, and let V(T,n) = o(o’-I+‘) and 
4 T) == o(n ‘-I+‘) for small fixed c. Then the number of 
possibilities for the dimensions of a box in E( V(T,n), r(T)) 
is I?(( logn /log(r( 2’)))“-‘), and the number of boxes in 
E( V T,n), r( 7’)) that have identical dimensions is 

l fqn ,/V(T,n)). 
llaving described canonical boxes, we shall proceed to 

almost uniform distributions of n keys, the distributions are 
termed almost uniform because the number of keys in each 
canonical box does not deviate too far from the volume of 
the canonical box divided by nl-‘. For d-2,3, we can 
explicitly construct such distributions and thereby get 
Theorem 5. For d >3, we have to resort to counting argu- 
ments and show that the number of distributions of n keys 
which do not satisfy the properties in Theorem 6, is less 
than the total of udr possible distributions. 

Theorem 5. For d =2,3, there is a set K of n keys 
such that for each canonical box 6, 

We shall briefly outline how to construct a set K of n 
keys satisfying tbe conditions in Theorem 5 for d=2. We 
use an inductive construction. Let z, and zz denote the 
two attributes of a key. Suppose we have a such a set for 
n =m. We make two copies of the set of keys. lo the first 
copy transform z1 to 22,-l and z2 to z2. IO the second 
copy transform z, to 22, and z2 to z?+m. A canonical box 
of volume 2m and z1 dimension equal to 1 contains exactly 
one key, as each key has a distinct value for 2,. If 

b ,,,z,~) x (z2,,z2z) is a canonical box of volume m 
corresponding to n=m, then [22,,-1,2z,e-1) x [z~,,z~~) 
and (22,,-1,22,*-1) X (zzl+m,zz,+m) are canonical boxes 
of volume 2m corresponding to n=2m. Moreover, all 
canonical boxes, of volume 2m and z, dimension greater 
than or equal to 2, corresponding to t1=2m, can be 
obtained in this manner, and then by the induction 
hypothesis each of them contains exactly one key from one 
of the two copies. 

Theorem 6. Let u n dn be the number of distinct sets 
K of rt keys, each key in Nd, which satisfy the three 

properties given below. Then u tends to 1 as n tends to o 
and u =:( 1 -0(1/n)). 

1. Let a(n)==2p(log,n) and let vu=e(n)n ‘-I. For each 
canonical box 6, 

I J 
vof(6) 

s IbnKl s So(n) 
I 1. 

vof(b) 

VO vo 

2. Each canonical box of volume wd-’ contains at most 
logen keys. 

3. IJnKl 2 (n/W2pW)2d)). 



4. Proofs of Lcmmaa 

In this section we give proofs of the main lemmas in 
Theorems 1, 2 and 3. For d =2,3, let K be a set of n kcya 
as specified by Theorem 5 and lor d >3 let K bc as 
specilird by Theorem 6. In Model B, as we restrict our- 
selves to binary comparisons, the only possible comparisons 
are those between two elements in the input tuple, and 
those between an element in the input tuple and a con- 
stant. We shall focus on canonical boxes that are subboxcs 
of the canonical box J. For each box b E J, the input tuplr 
Q(b)=(z,,tz ,2,221,222,....,2d,‘~d~) is such that 
z,, <z,~ <ql <zz2 < . . . <zd, <zdz, and so a comparison 
involving two elements in the input tuple has the same out- 
come for each subbox b of J. Then, in Model B, we need 
to analyze only comparisons between a single element in 
the input tuple and a constant. We note that, if the input 
tuple satisfies a comparison between zj, the (i)‘h element in 
the tuplc, and a constant when zj takes on the value a, as 
well as when Zj takes on the value a?, then the input tuple 
satisfies the comparison whenever zj takes oa any value 
between OL, and a2. 

Let r(T)=(84 T(2p(d))zd), let V,(T,n)=( r(T)nd-‘) 
and let. V,( T,n)=( r( T)a(n)nd-‘). For d =2,3, we let 
R( T,n)=E( VI( T,n), c(T)) and for d >3 we h-t 
n(r.n)={b:beE( V,(T.n),r(T)), IbnK1zeTn(n)}. 

frooj 01 Lemma t. We sketch the proof for d > 3, 

for d =2,3, the reasoning is similar. Ilsing the informat,ion 
that the canonical box J contains at Icast 
( n /(4(2 p( d))‘d)) points, one ran show that the number of 
boxes in E(T,n) that have identical dimensions is 
n(f~/(rtT)a(n))), and then from Lemma 6 we have 
‘2’ If?( r,n)l = fI(n(10g”)~ *). The intcrscction of any two 
distinct boxes b,,b, in R(T,n) is a canonical box of volume 
at most (a(n)n d-l, and so from Theorem 6 
Ib,nhnKI <fJa(n) <(l/T)mi4IhnKI, IbnKl). 

Proo/ o/ Lemma 2. The lower hound on In(T,n)I 
follows from Lemma 1. We only consider the case d >3, 

the reasoning in the case d =2,3, is almost identical. Sup- 
pose there are distinct boxes b,,b, in B( T,n) and a vertex (I 
such that both the input tuples Q(b,) and Q(b,) satisfy 

cond(v). We show that there exisbs a box b’ such that 
Ib’nKI <so(n) <(l/T)min(IblnKI, lb2nKI) and 
Q( b’) satisfies cond( v). There are two cases. 
Coae I. b,n b, # I$, then Q(bln b?) satisfies rend(o) and 
]b,n b2nKI <60(n). 

Coae 2. b,n b, =+, let Q(b,)=(all,a12.....1ddl’Qd.‘) and 
Q(b) =(8,,,8,2,....,ed,‘Bd2). Then lor some i, 
ai, <a;,5 Pi, <Pi? or PiI <Bi:sa;l <ai?. Let Q(b,‘) 
be obtained from Q(b,) by replacing ais, the (2i)‘* element 
in Q(b,), by (pi, + I), and similarly, let Q(b?‘) be obtained 
from Q( b2) by replacing Biz, the (2if element in Q( b,), by 
Is;,+ I). Then one of Q(b,‘), Q(b2’) satisfies rood(u). As 
each dimension of b, and 6, ;s at least r(T), b,’ and bz’ arc 

canoniral boxes of volume at most o(“)nd-’ and so 
Ib,‘nKI <6o(n)and Ib,‘nKI <60(n). 

I’roo/ o/ Lemma 3. Let the data values associated 
with all the keys in K bc distinct. Let mozin(b) denote the 
maximum of all the data values whose keys lie in the box b. 

A(k)={b:bCC’(n d ‘1, b c .I. morin(b)=/(k)]. 

\z’c* have t.hr following lemma. 

/,emmn 7. Thrrc exist.s /I’, c 11’ such that 

I. II\-, 15 rn( n /UJ( “)) whrre cR is a constaut drpendrnt 
ou d, w(n)=1 for d=2,3,4, and lu(“)=log:n for 
d>4. 

2. For each k C K,, IA(k)12 1. 

3. k);, IA(k)l = ~~“(logn)~’ where 8=1 for d=2,3, 

and’8 =2 for d >R, and c2 is a constant dcpendrnt on 
d. 

Let k be a key in K, such that for some vertex u(k) 

satisfying dMu(k))=/(k), there are 6 boxes 
b,(k), b,(kL...., b,(k) in A(k) such that each of 
Q(b,(k)), Q(b,(k)),...., Q(b*(k)) satisfies cond(u(k)), where 
I~=(log~T+(d+.5)log,log~n + dJd ‘), Let K, be the set of 
all such keys in K,. For each key k in K,, let g(k) be the 
smallctlt canonical box containing each of 
b,(k), b:(k),...., b&k). Then by Lemma 4. 

uol(g(k)) z ( nd-’ T(l~g~n)~+‘) and Q(dk)) satisfies 
co&( u(k)). l:rom Lemma 5, the are at most 
O( $1 7’ ‘(log”) “) possibilities for g(k). Suppose 
lK21 = fl( n/(w(n)(logn)“)). Then we can find T+l keys 
k,, k2,...., kT+, such that g(k,)=g(k2)=....=g(kT+,) and 

y(k,) satisfies each of cond( u(k,)), cond(u(k,)), . . . . . 

rond(u(k,+,)) for distinct vertices u(k,), u(kp), . . . . . 

u(kT+,). The query time then exceeds T. Thus 
IKQI =o(n /(W(“)(l%“)?)), and 

,L’ IA( =o( n(l~gn)~.~). We let K’=(Kl -Kz). 

5. Conclusion 

We have obtained spacr-time tradeoffs for orthogonal 
range query in two moth+, the arithmetic model and the 
tree model. Most. data structures used in practice are 
rooted t.rcrs and so it may be worth studying more prob- 
lems in t.he context of Model II. We conclude by raising 
cluedions related 1.0 the tree model. 

I. Drawiug an analog with decision trees, what happens 
whcan the roudit,ions assoriatcd with trre edgrs are 

allowed to he romparisons involving linear or higher 
o&r poylnomial fuurtions of thr input ? Do ihc 
I~~unds weaktan in !+urh a situation ? 

2. LC’II:II. kind ol bountls cau one obtain for queries other 
thau orthogonal range qlcry, say circular range query 
or polyhctlral qurry ? 

3. C:an thr bounds obGnctl for the tree model be 
extrudrd to data structures which can be modellrd as 
directed acyclic graphs? 
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