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Abstract

We investigate the question of {storage) space - {retrieval)
time tradeoff for orthogonal range queries on a static data-
base. Lower bounds on the product of retrieval time and
storage space are obtained in the arithmetic and tree

models.
1. Introduction

Consider a data base that contains a collection of
records, each with a key and a number of data ficlds.
Given a range query, which is specified by a set of con-
straints on the keys, the data base system is expected to
return the set of records, or a function of the set of records
whose keys satisfy all the constraints. If the data base is
static the collection of records may be preprocessed to
achieve a balance between the storage utilised and the time
required to answer a query. There is an extensive literature
[1,2,3,7,8,9, 10] on algorithms for range query, and the
space and time requirements have traditionally been used
as performance measures for such algorithms. In this
paper, we investigate the question of (storage) space -
(retrieval) time tradeoff for orthogonal range queries on a
static database.

Let G be a commutative semigroup with an addition
operation +. Let d be a fixed positive integer. Let
N ={1.2,...n} and let N¢ denote the set of all d-tuples of
positive integers less than or equal to n. A record (k,f(k))
is a pair of key k€ N¢ and datum f(k)€G. The data base
consists of n such records. Let & =(I¢,,k2,....,kd). An
orthogonal range query is specified by a 2d-tuple
g =(2,;,212.%2,200,--.-,24;.84,) Of positive integers satisfying
2;,<z;,,, 1=isd, or alternately, the query region is a
parallelepiped (box) &, defined by the product
{251,2)9) % [291,220) X ... X [24,,24,) of d-semiclosed inter-
vals with positive integer endpoints. We consider two types
of response to such a query, one where the output is the
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semigroup sum of the data f(k) whose key k are located in
the query parallelepiped (box) 6, and the other where the
output is the list of records whose keys lie in the query
parallelepiped b. We use @(b) to denote the input tuple ¢
corresponding to query region b, and K to denote the set of
keys in the database.

A space-time tradeoff secks to answer questions like
what is the minimum amount of storage needed to ensure a
certain query time. In the orthogonal range query problem
the set of query regions is fixed. The tradeoff between
space and time is dependent on the model of data structure
and the set of records in the data base. We fix the data
structure model and then try to obtain a set of records that
makes this tradeoffl as worse as possible. Thus the lower
bounds on space-time products are to be intrepreted as
worst. case bounds, i.e. there exists a set of n records whose
space-time product has the said bounds.

We study two models. In Model A, we work in the
general framework defined by Fredman [4, 5, 6], and con-
sider only data structures and manipulation algorithms
which are independent of the choice of the semigroup G.
So the set K of keys in the database together with the set
of query regions completely specifies the problem. The
model is an arithmetic model with unit cost for each arith-
metic operation but no cost for memory retrieval. We only
consider that type of response where the output is the semi-
group sum of the data values whose keys lie in the query
tegion. In this model, we show that for orthogonal range
query on a static database with n records, there is a space-
time tradeoffl TS 2 {](n(!ogrn)d'o) where 0=1 for
d =23, and 6 =2 for d > 3. Space-time tradeoffs for circu-
lar range query and interval query in this model are studied
by Yao in [11]. The complexity of dynamic range queries in
this model is discussed by Fredman in [4, 5, 6].

In Model B (tree model), we study a broad class of
rooted tree data structures. In this model, the data struc-
tures are no longer independent of the choice of the semi-
group G, and any correlation between the distributions of
the given keys and the corresponding data values can be
utilised to build more efficient data structures. We investi-
gate two instances of orthogonal range query, the counting
problem and the mazimum problem, where the output is a
single element in the semigroup G. In the counting prob-
lem, the response to a query is the number of keys located
in the query parallelepiped. In the maximum problem, there
is a linear ordering on the data values and the response to a
query is the maximum of the data values whose keys lie in
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the query parallelepiped. For the counting problem, for a
static data base with n records, we show that there is a
space-time tradeoff TS 2 ﬂ(n(logrn)“*) where 8 =1 for
d=23 and 6 =2 for d >3. For the maximum problem,
we show that (logT + loglogn)!t s = H(n(logn)d'e)
where 8 =1 for d =2,3, and 8 =2 for d > 3.

In Model B, we also investigate the reporting problem
where the response to a query is the list of all the records
whose keys are located in the query parallelepiped. For a
set of records and a corresponding tree data structure, let
L{b) be the number of records whose keys lie in the query
region b, let T(b) be the time required to answer the query
corresponding to &, and let

. ()

= max .
b such that 15L(8)slogn L(b)
For the reporting problem we show that there is a space-

time tradeofl (logT'+ loglogn)¢™! T' S = 2(n (logn)?™9),
where 8 =1 for d=2,3, and 8 =2 for d >3.

2. An Overview

2.1. Model A - Arithmetic Model

In this model [}, a data structure utilises an infinite
array Z of variables z;,2,,zy,...., which stores elements from
the commutative semigroup G. Given any input query, the
query answering algorithm chooses a collection of at most
m variables in the array and returns their semigroup sum
as the response to the query. Since only arithmetic opera-
tions are charged, the smallest possible m for which the
query answering algorithm works correctly is the query
time T. The data structure is assumed to be independent
of the specific semigroup G and so the mapping between
elements in G and variables in Z is determined solely by
the set K of n keys in the data base. With each variable ;
in Z is associated a subset 4; of K and the data value

EEh J(k) is stored in z;, where f(k) is the data value asso-

ciated with k. Let H 2% such that every set in H is asso-
ciated with some variable in Z and every variable in Z is
associated with some set in /. Let R be the set of all possi-
ble query regions, and P(H,T) be the property that for
each b € R, b K is expressible as the disjoint union of at
most T sets in H. The query answering algorithm works
correctly iff P(H,T) is satisfied. For a set K of keys, the
storage space S is defined by

S min |H].

H salisfying P(H,T)
The following Theorem summarizes the results in this
model.

Theorem 1. In Model A, for orthogonal range query
on a static database with n records, there is a space-time
tradeoff TS5 = ﬂ(n(logrn)"e) where 8 =1 for d =2,3 and
6=2for d >3.

The proof is based on Lemma 1 given below. The
Lemma asserts that there exists a sel K of n keys and a
large enough set B(T,n) of query parallelepipeds such that
the subsets of K induced by members of B(T,n) satisfy cer-
tain intersection conditions. The proof of Lemma 1 is given
in Section 4.
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Lemma 1. There is a set K of n keys and a set
B(T,n) of boxes satsfying the following properties.
1. T |B(T.n)| =2(n(logrn)*®) where 8 =1 for d =2,3

and 8 =2 for d >3.
2. For b;,b,€ B(T,n),

) -

18 b K] < 5 min( 16, K], [bN K ).

Using property 2 in Lemma 1, we show that for any H
satisfying P(H,T), we must have [H|=|B(T,n)|. Then
Theorem 1 follows from the lower bound on {B(T,n)| given

by property 1 in Lemma 1. Let b,,b, be distinct boxes in
B(T,n). As b (K is expressible as the union of at most T

distinct

sets in  /f, there  exists A, €N such that
b= (1/T) 6K and h Qb K) Since
I, KIA (b:NK) | < (1/T)Ib,AK], b,  canaot

appear in the decomposition of §,M K as the union of
members of /. So with each b; in B(T,n) we can associate
a distinct h; in H.

2.2. Model B - Tree Model

In this model, the data structure is assumed to be a
rooted tree. The set of tree vertices has a distinguished
subset called data vertices, and each data vertex contains a
data item which is an element in the commutative semi-
group G. We let data(v) denote the data value stored in a
vertex v. With each edge in the tree is associated a condi-
tion, each condition being restricted to be a conjunction of
binary comparisons. Given an input query in the form of a
tuple of numbers, the query answering algorithm first visits
the root. A vertex v is visited iff it is a son of some vertex
u that has already been visited and the input tuple satisfies
the condition associated with edge uvr. We define cond{v)
to be the conjunction of conditions on the path from the
root to vertex v. For any query region b, on being given
the corresponding tuple Q(b) as input, the query answering
algorithm visits vertex v iff Q(b) satisfies cond(v). Finally,
the response to a query is the semigroup sum of the data at
all the visited data vertices.

For a fixed tree, the query time is said to be T if T is
the maximum of the numbers of data vertices visited by the
query answering algorithm for all possible queries. For a
fixed set of records, the storage space S is defined to be the
minimum number of data vertices that a corresponding tree
data structure must have in order to guarantee a query
time of T. We note that the cost of traversing edges and
evaluating the associated conditions is not included in the
query time, and that there is no bound on the degree of
any vertex. The tree model allows the data structure to
depend on the semigroup G and any correlation betwen the
distributions of the given keys and the corresponding data
values can be exploited to build a better data structure.

On the other hand, the tree nature of the data structure
restricts the manner in which data locations may be
accessed.

In this model, we consider two instances of orthogonal
range query which we call the counting problem and the
maximum problem. In the counting problem, the data
value associated with each key is 1, and the response to a
query is the number of keys located in the query box. The



semigroup G is the semigroup on non-negative integers
with the usual addition operation. For the maximum prob-
lem, G is the semigroup on non-negative integers with the
addition operation defined by z+y = max{z,y}. The
response to a query is the maximum of all the data values
whose keys are located in the query box.

The results for the counting problem, are summarized
by the following theorem.

Theorem 2. In Model B, for the counting problem in a
static database with n records, there is a space-time tra-
deofl TS = An(logrn)®®) where 6 =1 for d=2,3 and

=2 for d >3.

The main lemma in the proof is stated below, we
prove the lemma in Section 4.

Lemma 2. There is a set K of n keys and a set

B(T,n) of boxes satisfying the following properties.

1. T |B(T,n) =0(n(logrn)®® where 8 =1 for d =2,3
and 8 =2 for d > 8.

2. For distinct boxes b,,b, in B(T,n) and any vertex v, if
both the input tuples @(b,) and @(b,) satisly cond(v)
then there is a box b' such that Q(b') also satisfies

eond(v)and |b'N K| < 'l? min( b, K|, |6, K]).

Using property 2 in Lemma 2, we show that if the
query time is T then the tree data structure must have at
least |B({T,n)| data vertices, and then the theorem will fol-
low from the lower bound on |B(T,n)| given by property 1
in Lemma 2. For any box b, since the query answering
algorithm visits at most T data vertices with @(&4) as input,
there is a visited data vertex v such that
data(v) = (1/T)|bryK|. Suppose for distinct boxes b,,b,
in B(T,n), there is a data vertex u such that both Q(5,)
and Q(b,) satisfy cond{u) and
data(u) = (1/T) min( |6, K|, |6 K| Then by
Lemma 2 there is a box b’ such that Q(b’) satisfies corld(u]
and [' K| < data(u), so the query answering algorithm
would work incorrectly with Q(b') as input. So with each

box b; in B(T,n} we can associate a distinct vertex u; such
that Q(b,) satisfies cond(u;} and data(w;) = (1/T} b, K]|.
So the tree must have at least |B(T,n)| data vertices.

For the maximum problem, we assume that the data
values associated with all the keys in K are distinct. We
then have the following Theorem.

Theorem 3. In Model B, for the maximum problem in
a static database with n records, we have a space-time tra-
deoff (log T + loglogn)? ' s = ﬂ(n(logn)“"o) where 8 =1 for
d=23,and 0=2for d >3.

The main lemma in the proof is stated below, a proof
of the lemma is givep is Section 4.

Lemma 3. For the maximum problem, there is a sct
K of n keys such that there exists K’ C K satisfying the fol-
lowing properties.
1. K"} =(n/w(n)) where w{n)=1 for d =2,3,4, and
w(n)=log,n for d > 4.

2. For cach key k€K' there is a set of boxes A(k) satisfy-
ing conditions 2.1, 2.2, 2.3 and 2.4.
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2.1. The maximum data value in each box in A (k)
is [(k).
22,  JA(K) =1
2.3, k.!] [A(k) 2 eyn(logn)® ® where 8 =1 for
€K’

d =23, and 8 =2 for d >3, and ¢, is a con-
stant dependeat on d.

2.4. For each data vertex v and each key k€K', if
data(v) = f(k) then the number of boxes in
A(k) whose input tuples satisfy cond(v} is at
most & where
8 = (log, T + (d+5)log,log,n + d)? 1.

Once we have the above Lemma, we complete the
proofl as follows. For each box b€A(k), on being given
Q(b) as input, the query answering algorithm must visit a
data vertex v such that data{v)=f(k). So from Lemma 3,
we can conclude that for each key k in K*, the correspond-
ing data value f(k) is present in at least 87! [A(k)| data
vertices in the tree, and since the data values associated
with all the n keys are distinct, the number of data vertices
is at least 8 ! o |A(k)] which is 2(8™" n{logn)®®).

2.3. Tree Model for the reporting problem

The tree model defined in Section 2.2 is not suited for
the reporting problem because the degree of a vertex is

unrestricted, and there is no cost for traversing edges. In
such a model the reporting problem is solved optimally.
Consider a tree with n+1 vertices, root of degree n, and a
single distinct record in each leal. The condition on the
cdge between a leal and the root is a conjunction of com-
parisons which is true if and only if the query region con-
tains the key whose record is in that leaf. Then any query
visits only those data vertices which contain a record whose
key lies in the query region.

So we restrict ourselves to trees where every vertex
has degree less than some fixed constant (in fact letting the
vertex degree be bounded by a slow growing function of n
like {logn)? is adequate}. To compensate for the bounded
degree we allow the condition associated with each edge to
be a disjunction of comparisons. Thus cond(v), the con-
junction of the conditions on the path from the root to ver-
tex v, is now a conjunction of disjunctions. Moreover, for
each data vertex v, data(v} is an unstructured set of
records. We allow data vertices to share storage, so data(v)
is in effect the set of records acessed via data vertex v.

‘onsider a fixed set of records and a fixed tree for the
set of records. Let V{(b) be the set of data vertices visited
by the query corresponding to query region b. We only
require that |J data{v) be a superset of the set of

vel(b)

records whose keys lie in the query region b. So filtering
search [2] is also included in this model. The time T(b)
required to anawer the query corresponding to b is lower
bounded by the number of vertices visited plus the size of

U data(v). As T(b)is dependent on the output size it
vev(s)
iv not a correct measure of the overhead involved in
answering the query corresponding to b, so we define a
scaled query time 7" as follows. Let L{b) be the number of



records whose keys are located in b. T' is said to be the
scaled query time if

T = ()

max
b such that 1S L{b)=<logn Il(b)‘

For a fixed set of records, the storage S is defined to be the
minimum number of data vertices a corresponding tree
must have to ensure a scaled query time of T".

Theorem 4. In the tree model, for the reporting prob-
lem, there Is space-time tradeoff
(log T" + loglogn )1 T' S = (n(logn)?®), where 8 =1 for
d=23, and 8 =2 for 4 >3.

The proof of Theorem 4 is lengthy and will appear in
a detailed version of the paper. We also note that, in a tree
model with restricted vertex degree and disjunctions of
comparisons as conditions on edges, there are bounds simi-
lar to those in Theorem 4 for the maximum problem.

3. Canonical paralielepipeds and almost uniform distribu-
tions

We shall utilise a special class of parallelepipeds in
obtaining the desired space-time tradeoffs. We assume that
n is a power of 2 and let
L={[72+1, G+12 +1): 0 j <(n /2')}. I is the set
of intervals obtained by breaking up (1, n+1) into n /2
semi-closed intervals of equal size, each interval being
closed on the left and open on the right. Let
I'=Igy iy U logu Then I is defined to be the
set of canonical parallelepipeds, or equivalently canonical
boxes,

For a box b, dimensions(b) defined to be the d-tuple
(§),4,....,14) where i; is the length of box b along the z;-
axis, for 1 < s = d. We let C(v) denote the set of all canon-
ical boxes of volume v and vol(b) the volume of a box b.
Let p(z) denote the smallest power of 2 greater than or
equal to z, Let J be the canonical parallelepiped
JoX Jy % % dy, where for 0sisd-1,
Jo=[27(2p(d)) ' n+1, (2i+1)(2p(d))'n+1). The fol-
lowing lemmas list the properties of canonical boxes that
we shall require.

Lemma 4. Let b,b,,...by be canonical boxes of
3

volume v such that (y b, # & and b the smallest box con-
§
taining each of b),b,,....,by. Thea b is a canorical box such
3
that wvol(b) = v 2*-¢  and vol( M) b;)= v 2¢-F where
d-1 el
et =8,
Lemma 5. Let ven
[C(v)] = (v n%(dlogyn - logyu + d)*!).
We define E(V(T,n), r(T)) to be a largest set of
boxes satisfying the following conditions.

1.  Each box in E(V(T,n),s(T)) is a subbox of the
canonical box J.

2. Each box in E(V(T,n), r(T)) is a canonical box of
volume V(T,n) and the intersection of any two boxes
in E(V(T,n), r(T)) is a canonical box of volume at
most ( V(T,n)/r(T)).

d_l, then

3. For each box b in E( V(T,n), r(T)), each dimension of

b is at least r(T), and every canonical box b’ such that
dimensions(b') = dimensiona(b) and b'CJ is also
present in E( V(T,n), r(T)).

Lemma 6. Let V(T,n) and r(T) take on values that
are powers of 2, and let V(T,n) =o(n¢?*Y and
r(T) ==o(n*1*) for small fixed . Then the number of
possibilities for the dimensions of a box in E( V(T n}, r(T))
is 2((logn /log(r(T)))"‘ ), and the mumber of boxes in
E( VST,n), r(T)) that have identical dimensions is
2(n®/V(T,n)).

Having described canonical boxes, we shall proceed to
almost uniform distributions of n keys, the distributions are
termed almost uniform because the number of keys in each
canonical box does not deviate too far from the volume of
the canonical box divided by n¢t For d=23, we can
explicitly comstruct such distributions and thereby get
Theorem 5. For d >3, we have to resort to counting argu-
ments and show that the number of distributions of n keys
which do not satisfy the properties in Theorem 6, is less
than the total of n possible distributions.

Theorem 5. For d =23, there is a set K of n keys
such that for each canonical box &,

vol(b vol{b)
I_nd_(-»_ll s [bNK| s l S

We shall briefly outline how to copstruct a set K of n
keys satisfying the conditions in Theorem 5§ for d=2. We
use an inductive construction. Let z, and z, denote the
two attributes of a key. Suppose we have a such a set for
n=m. We make two copies of the set of keys. In the first
copy transform 2z, to 2z,-1 and 2z, to z,. In the second
copy transform z, to 2z, and z, to z,+m. A canonical box
of volume 2m and z; dimension equal to 1 contains exactly
one key, as each key has a distinct value for z,. If
(211, 242) X [294,24) is a3 canonical box of volume m
corresponding to n=m, then [2z,,-1,2z,9-1) X [29,209)
and [22,-1,22,5-1) X [2,,+ m,z,,+ m) are canonical boxes
of volume 2m corresponding to n=2m. Moreover, all
canonical boxes, of volume 2m ard z, dimension greater
than or equal to 2, corresponding to n=2m, can be
obtained in this manner, and then by the induction
hypothesis each of them contains exactly one key from one
of the two copies.

Theorem 6. Let o n® be the number of distinct sets
K of n keys, each key in N¥, which satisfy the three

properties given below. Then o tends to 1 as n tends to =

and o =(1-0o(1/n)).

1. Let a(n)=2p(log;n) and let vo=a(n)n*". For each
canonical box b,

I——leo{ b J s |bN K| s 6a(n) [Ml]
%9 Yo

d-1

2. FEach canonical box of volume n contains at most

log,n keys.
VA K| = (n /(4(2p(d))*?)).

»



4. Proofs of Lemmas

In this section we give proofs of the main lemmas in
Theorems 1, 2 and 3. For d =2,3, let K be a set of n keys
as specified by Theorem 5 and for 4 >3 let K be as
specified by Theorem 6. In Model B, as we restrict our-
selves to binary comparisons, the only possible comparisons
are those between two elements in the input tuple, and
those between an element in the input tuple and a con-
stant. We shall focus on canonical boxes that are subboxes
of the canonical box J. For each box b € J, the input tuple
QUb)=1{211,212,291,20,---, 24112 4,) is such that
2y <2y, <2y <2y <.... <2y, <24, and s0 a comparison
involving two elements in the input tuple has the same out-
come for each subbox b of J. Then, in Model B, we need
to analyze only comparisons between a single element in
the input tuple and a constant. We note that, if the input
tuple satisfies a comparison between z;, the () element in
the tuple, and a constant when z_ takes on the value a, as
well as when z; takes on the value a,, then the input tuple
satisfies the comparison whenever z; takes on any value
between a, and a,.

Let (T)=(84 T (2p(d))*%), tet V,(T,n)=(r(T)n%Y)
and let Vo(T,n)=(r( T)a(n)nd’l). For d =23, we let
B{Tm)=E(V,(Tn), r(T)) and for d>3 we Ilet
B(Tn)={b:beE(V,AT.n), r(T)), b K|26Ta(n)}.

Proof of Lemmat. We sketch the proof for d >3,
for d =2,3, the reasoning is similar. Using the information
that the canonical box J contains at least
(n/(4(2 p(d))""i)) points, one can show that the number of
boxes in B(T,n) that have identical dimensions is
2(n /(r(T)e(n))), and then from lLemma 6 we have
T |B(T,n)| = 2(n(logn)® 2). The intersection of any two
distinct boxes b,,b, in B(T,n) is a canonical box of volume
at most (a(n)n%!) and so from Theorem 6
BN b:N K] <Ba(n) <(1/T)min(lb,n K|, |bon K ).

Proof of Lemma 2. The lower bound on |B(T,n)|
follows from Lemma 1. We only consider the case d >3,
the reasoning in the case d =2,3, is almost identical. Sup-
pose there are distinct boxes b,,8, in B{T,n) and a vertex v
such that both the input tuples Q(b,) and Q(b,) satisfy

cond(v). We show that there exists a box b’ such that
' K| <Ba(n) <(1/T)min(|b,N K], b K|) and
Q(b') satisfies cond(v). There are two cases.
Case 1. by b, # &, then Q(b M b,) satisfies cond(v) and
16, b K| < 8a(n).
Case 2. b by =&, let Qb)) =(a)),@pp,...,my,@y,) and
Qb)) =(B11,B 12118 41,B g2)- Then  for some 1,
a; <a;,SB; <B;, or B;, <P, Sa;, <a,, Let Qb))
be obtained from Q(6,) by replacing a;,, the (2i)* clement
in Q(b,), by (a;, + 1), and similarly, let @(b,’) be obtained
from Q(b,) by replacing B;,, the (2:')”l element in Q(5.,), by
(B;;+1). Then one of @(b,"), Q(b,’) satisfies cond(v). As
each dimension of b, and b, is at least r(T), b, and b,' are
canonical boxes of volume at most a(n)n®! and so
6N K| <6a(n)and |b, K| <6a(n).

Proof of Lemma 3. Let the data values associated

with all the keys in K be distinct. Let mazin(b) denote the
maximum of all the data values whose keys lic in the box b.
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For each key k € K, let
AlkY={b:beC(n? "), 6C J. mazin(b)=f(k)}.
We have the following lemma.

Lemma 7. There exists K € A such that

1. |K,|=c3{n/win)) where c; is a constant dependcent
on d, win)=1 for d =234, and w(n)=log,n for
d > 4.

2. Foreach k¢ K|, |A(k)]=1.
3. Lo |A(k) =c,n(logn)? ® where 6 =1 for d =23,
1

k€K

and 8 =2 for d >3, and ¢, is a constant dependent on

d.

Let k be a key in K, such that for some vertex u(k)
satisfying  data{u(k))=f(k), there are & boxes
by(k), by(k),...., bg(k) in  A(k) such that ecach of

Qb (K)), Q(bylk))....., Qlbglk)) satisfies condlu(k)), where
8 =(log, T + (d+5)log,log,n + d)? '), Let K, be the set of
all such keys in K,. For each key k in K,, let g(k) be the
smallest canonical box containing each of
by(k), bolk),...., bylk). Then by Lemma 4,
vol(g(k)) = (nd"1 T(loggn)“"t’) and  Q(g(k)) satisfies
cond(u{k)). From Lemma 5, the are at most
O(n T '"(logn)®) possibilities for  g(k). Suppose
|K,| = 2(n /(w(n)(logn)}). Then we can find T+1 keys

ki, ky,..... by, such that g(k)=g{k))=... =glkr,,) and
g(k,) satisfies each of cond(ulk()}, cond(u(k)), ...,
cond(u(kr4y)) for distinct vertices u(k;), u(ky), ...,
u(kr+,). The query time then exceeds 7. Thus

““Ql=°("/(w(")(|°g")2))s and
L |A(k)] =o(n(logn)?™). Welet K'=(K,-K,).
K

2

5. Conclusion

We have obtained space-time tradeoffs for orthogonal
range query in two models, the arithmetic model and the
tree model. Most data structures used in practice are
rooted trees and so it may be worth studying more prob-
lems in the context of Model B. We conclude by raising
questions related to the tree model.

1. Drawing an analog with decision trees, what happens
when the conditions associated with tree edges are
allowed to be comparisons involving linear or higher
order poylnomial fuunctions of the input ? Do the
bounds weaken in such a situation ?

2. What kind of bounds can one obtain for querics other
than orthogonal range query, say circular range query
or polyhedral query ?

3. Can the bounds obtained for the trece model be
extended to data structures which can be modelled as
directed acyclic graphs?
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