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SPACE-TIME TRADE-OFFS FOR ORTHOGONAL RANGE QUERIES*

PRAVIN M. VAIDYA?

Abstract. This paper investigates the question of (storage) space-(retrieval) time trade-off for orthogonal
range queries on a static data base. Each record in the data base consists of a key that is a d-tuple of
integers, and a data value that is an element in a commutative semigroup G. An orthogonal range query is
specified by a d-dimensional parallelepiped (box). Two types of response to such a query are considered:
one where the output is the semigroup sum of the data values whose keys are located in the query
parallelepiped, and the other where the output is a list of all the records whose keys lie in the query
parallelepiped. This paper studies two models, the arithmetic model and the tree model and obtains lower
bounds on the product of retrieval time and storage space in both models.
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1. Introduction. Consider a data base that contains a collection of records, each
with a key and a number of data fields. Given a range query, which is specified by a
set of constraints on the keys, the data base system is expected to return the set of
records, or a function of the set of records whose keys satisfy all the constraints. If
the data base is static the collection of records may be preprocessed to achieve a
balance between the storage utilized and the time required to answer a query. There
is an extensive literature [1], [2], [4], [8], [9], [11], [12] on algorithms for range query,
and the space and time requirements have traditionally been used as performance
measures for such algorithms. In this paper, we investigate the question of (storage)
space-(retrieval) time trade-off for orthogonal range queries on a static data base.

Let (3 be a commutative semigroup with an addition operation +. Let d be a
fixed positive integer. Let N {1, 2, , n} and let Na denote the set of all d-tuples
of positive integers less than or equal to n. A record (k,f(k)) is a pair of key k Na

and datum f(k) e (3. The data base consists of n such records. Let k (kl, k2, ka ).
An orthogonal range query is specified by a 2d-tuple (x11, x12, x2, x22,""", xa, xa2)
of positive integers satisfying xil < xi2, _-<i-< d. Alternately, the query region for an
orthogonal range query is a parallelepiped (box) b, defined by the product [xl, x2)
[x2, x22)x... [xa,, xa2) of d-semiclosed intervals with positive integer endpoints.
A key k is said to be located in a box b [xl, X12 X Ix21 X22 )<" X [Xdl Xd2 if and
only if xi <= ki < xi2, 1 <_-iN d. We consider two types of response to such a query, one
where the output is the sum of the data f(k) whose keys k are located in the query
parallelepiped (box) b, and the other where the output is a list of all the records whose
keys lie in the query parallelepiped b.

Let Q(b) denote the input 2d-tuple corresponding to query boxb, and let K denote
the set of keys in the data base. As we shall be studying space-time requirements for
orthogonal range query only, we shall assume that the set of query regions is fixed to
be the set of boxes.

A space-time trade-off seeks to answer questions such as what is the minimum
amount of storage needed to ensure a certain query time ? The trade-off between space
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SPACE-TIME TRADE-OFFS FOR ORTHOGONAL RANGE QUERIES 749

and time is dependent on the model of data structure and the set of records in the
data base. We fix the data structure model and then try to obtain a set of records that
makes this trade-off as bad as possible. Thus the lower bounds on space-time products
are to be interpreted as worst-case bounds, i.e., there exists a set of n records whose
space-time product has the said bounds.

We study two models. In Model A, we work in the general framework defined by
Fredman [5]-[7], and consider only data structures and manipulation algorithms that
are independent of the choice of the semigroup G. So the set K of keys in the data
base together with the set of query regions completely specifies the problem. Given a
query box b, the query answering algorithm is expected to return the semigroup sum
of the data values whose keys are located in b. Model A is an arithmetic model with
unit cost for each arithmetic operation but no cost for memory retrieval. In this model,
we show that for orthogonal range query on a static database with n records, there is
a space-time trade-off (log T)a-lTS>=l(n(log n)a-), where 0= for d =2, and 0=2
for d-> 3. Space-time trade-offs for circular range query and interval query in this
model are studied by Yao in [13] and [14]. We note that for d 2 the results of Yao
14] are considerably stronger for this model; specifically he shows that for a restricted

type of range query T D,(log n/(log (S/n)+log log n)) for d 2. The complexity of
dynamic range queries in this model is discussed by Fredman in [5]-[7].

In Model B (tree model), we study a broad class of tree data structures. In this
model, a data structure is a rooted tree, and with each edge in the tree is associated
a condition. Given a query, the query answering algorithm starts with the root, and
visits a vertex v if and only if the given query satisfies the conjunction of the conditions
on the path from the root to v. The output corresponding to a given query is a function
of the data associated with the visited vertices. Several standard data structures, such
as linked lists, range trees, etc. [1], [2], [4], [8], [9], [11], [12], fit into this model. In
Model B, we investigate the orthogonal reporting problem where the response to a
query is a list of all the records in the data base whose keys are located in the query
box. Since the output size is query dependent, the time required to answer a query is
not the correct measure of the overhead involved in producing the desired response
to the query. So we define a scaled query time T’ that measures the overhead for
producing one unit of output. For the orthogonal reporting problem on a static data
base with n records, we show that there is a space-time trade-off (log T’+
log log n)d-lT’S>-_f(n(log n)d-), where 0= for d=2, and 0=2 for d_>-3.

The results in this paper for Model A (arithmetic model) have been significantly
strengthened by Chazelle using a different technique [3].

2. An overview.
2.1. Model A. Arithmetic model. In this model [5], [6], [7], a data structure is an

infinite array Z of variables Zo, zl, z2," ", that stores elements from the commutative
semigroup G. Given any input query, the query answering algorithm chooses a collec-
tion of at most T variables in the array and returns their semigroup sum as the response
to the query. Since only arithmetic operations are charged, the query time is T. The
data structure is assumed to be independent of the specific semigroup G and so the
mapping between elements in G and variables in Z is determined solely by the set K
of n keys in the data base. With each variable zi in Z is associated a subset hi of K,
and the data value Ykh, of(k) is stored in zi, where f(k) is the data value associated
with k. Let H

_
2K such that every set in H is associated with some variable in Z and

every variable in Z is associated with some set in H. Let R be the set of all possible
query boxes, and let P(K, H, T) be the property that for each b e R, b VI K is expressible
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750 PRAVIN M. VAIDYA

as the disjoint union of at most T sets in H. (The lower bounds in this paper are valid
even if disjoint union is replaced by union in the definition of P(K, H, T).) The query
answering algorithm works correctly if and only if P(K, H, T) is satisfied. The storage
space S is defined by

S=max min ]H
K H satisfying P(K,H,T)

The following theorem summarizes the results in this model.
THEOREM 1. In Model A, for orthogonal range query on a static database with n

records, there is a space-time trade-off (log T)’t-TS>-_f(n(log n)a-), where O= for
d=2, and O=2 ford>=3.

The proof is based on Lemma given below. The lemma asserts that there exists
a set K of n keys and a large enough set B(T, n) of query parallelepipeds such that
the subsets of K induced by members of B( T, n) satisfy certain intersection conditions.
The proof of Lemma is given in 4.

LEMMA 1. There is a set K of n keys and a set B(T, n) of boxes satisfying the
following properties:

(1) (log T)a-’TIB(T, n)] =D,(n(log n)a-), where O= for d=2, and 0=2 for
d>-3.

(2) For distinct b,, b2, in B(T, n),
Using property (2) in Lemma 1, we show that for any H satisfying P(K, H, T),

we must have IHI>=IB(T, n)l. Then Theorem follows from the lower bound on
IB(T, n)l given by property (1) in Lemma 1. Let bl, b2, be distinct boxes in B(T, n).
As b 71K is expressible as the union of at most T sets in H, there exists hi H such
that Ih,I-> (1/T)lb (-] K and hi _c (b (3 K). Since I(b, K)(3 (bz(q K)I < (1/T)[bl (3 KI,
h cannot appear in the decomposition of b2 t"l K as the union of members of H. So
with each bi in B(T, n) we can associate a distinct hi in H.

2.2. Model B. Tree model. In the case of the reporting problem the output size
is dependent on the given query, and so the arithmetic model is not suitable for
investigating this problem. So we study the tree model for data structures. In this
model, the data structure is assumed to be a rooted tree. With each vertex v is associated
a set of data items and we let data(v) denote the set of data items associated with
vertex v. With each edge in the tree is associated a condition. Given an input query
in the form of a tuple of numbers, the query answering algorithm first visits the root.
A vertex v is visited if and only if it is a son of some vertex u that has already been
visited and the input tuple satisfies the condition associated with edge uv. We define
cond (v) to be the conjunction of all the conditions on the path from the root to vertex
v. Thus for any query box b, on being given the corresponding tuple Q(b) as input,
the query answering algorithm visits vertex v if and only if Q(b) satisfies cond (v). The
response to a query is a function of the data at the visited vertices.

In the tree model, we investigate the orthogonal reporting problem where the
response to a given luery is a list of all the records in the data base whose keys lie in
the query box. Let G be a semigroup consisting of a single element. We shall restrict
the universe of records so that the data in each record is the unique element from G.
We shall only consider sets of records which are such that no two records in a set
have the same key. Then the set K of keys completely specifies the set of records, and
the orthogonal reporting problem is to produce a list of all the keys in K that lie in
the given query box. Note that considering this special case does not cause any loss
of generality as the lower bounds obtained in the special case trivially extend to the
general case. Let r be a fixed constant. We restrict ourselves to trees where every vertex
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SPACE-TIME TRADE-OFFS FOR ORTHOGONAL RANGE QUERIES 751

has degree at most r. The condition associated with each edge in the tree is restricted
to be a disjunction of at most r binary comparisons. Thus cond(v), the conjunction
of the conditions on the path from the root to v, is now a conjunction of disjunctions
of comparisons. For each vertex v, data(v) is a set of keys. Vertices may share storage,
so data(v) is effectively the set of records accessed via vertex v.

Consider a fixed set K of keys, and a fixed tree for K. For a query box b, let
U(b) be the set of all those vertices v such that Q(b) satisfies eond(v). Given a query
box b, the query answering algorithm visits all the vertices in U(b), and extracts the
set of keys t(b) data(v). The set of keys b K is then obtained by explicitly testing
for each key in vt:(b) data(v) whether the key is located in b. Thus filtering search
[2] is included in this model. Let T(b) be the time required to answer the query
corresponding to b. T(b) is lower bounded by [U(b)[+[t:(b)data(v)[. Since the
output size is query dependent, the time required to answer a query is not the correct
measure of the overhead involved in producing the desired response to the query. With
respect to a fixed set K of keys, and a fixed tree for K, we define a scaled query time
T’ as follows:

T(b)
max

llbKl-<----log2 ]b [q K]"

For a fixed set of keys, the storage S is defined to be the minimum number of
vertices a corresponding tree must have to ensure a scaled query time of T’.

At this point we remark that several common data structures, such as linked lists,
range trees, etc. 1], [2], [4], [8], [9], 11], 12], fit into the tree model. Also note that
the tree model restricts the manner in which data records are accessed; it does not
place a restriction on how the data is stored. As long as there is a fixed tree that defines
how the data in the data structure is accessed, and a node in this tree corresponds to
a distinct unit of storage in the data structure, the data structure would still fit into
the tree model; it would not matter that the data structure itself was not a tree.

THEOREM 2. In the tree model, for the orthogonal reporting problem on a static data
base with n records, there is a space-time trade-off (log T’+loglogn)d-T’S >-

l)(n(log n)d-), where O= for d=2, and O=2 for d>-3.
The proof of Theorem 2 is based on Lemma 2 below. A proof of Lemma 2 is

given in 4.
LEMMA 2. Let c and cz be constants dependent on the dimension d. There exists a

set of K of n keys that has a subset K’ satisfying the following properties:
(1) IK’[_-> c,n.
(2) With respect to a particular tree for K, let V(k) be the set of all those vertices

v that satisfy the conditions (i) key k data(v); and (ii) there is a box b such that Q(b)
satisfies cond (v) and <- [b K] <-_ (d, n), where (d, n) for d 2 and (d, n)
log:n for d>=3. Then for each tree for K, for each key kK’, IV(k)[->
(log2 n)d-1/c2(log2 T’+log2 log r/) d-l.

Let K be a set of n keys and K’ be a subset of K such that K and K’ satisfy the
conditions in Lemma 2. Consider a fixed tree for K. For a key k, let V(k) be as defined
in Lemma 2. We must have that

IV(k)l Idata(v)l.
k- K’ U, V(k)

For each vertex v in Uk K’ v(k), Idata(v)l<=<(d, n)T’, since v is visited by a query
corresponding to a box containing at most K(d, n) keys. Then from properties (1) and
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752 PRAVIN M. VAIDYA

(2) in Lemma 2 it follows that

u V(k) >=
kK’

cln(log2 n) d-1

c2K(d, n)T’(log2 T’+log2 log n) d-l"

Thus the storage S for a set K of n keys satisfying the conditions in Lemma 2 must
obey the following constraint"

eln(log n) d-
S_>_

czK(d, n) T’(log2 T’+logz log2 n) d-l"

3. Canonical parallelepipeds and almost uniform distributions. We shall utilize a

special class of parallelepipeds (boxes) in obtaining the desired space-time trade-offs.
Let n be a power of 2 and let It {[j2+ 1, (j+l)2+l)’O<=j<(n/2)}. I! is the set of
intervals obtained by breaking up [1, n + 1) into n/2 semiclosed intervals of equal
size, each interval being closed on the left and open on the right. Let I=
Io U I1 U... U Ilog2n. Then I is defined to be the set of canonical intervals, and I d is
defined to be the set of canonical parallelepipeds, or equivalently canonical boxes.

For a box b, we use [ril(b), ri2(b)) to denote the interval that is the projection
of box b onto to the ith coordinate axis. Equivalently, for 1 <_-i_-< d, ri(b) and ri2(b)
denote the (2i-1)st and the (2i)th components of the 2d-tuple Q(b) corresponding
to box b. For a box b, dimensions(b) is defined to be the d-tuple ((rl2(b)- rll(b)),
(r2(b) rl(b))," ., (rd(b) rdl (b))). We note that since I contains intervals of
log n + distinct lengths, the total number of choices possible for the dimensions of
a canonical box is (log2 n+ 1) d. Let vol(b) denote the volume of a box b, and let
p(x)--2 [lg2x]. Let J be the canonical parallelepiped JoXJ x... X Jd_ where Ji
[2i(2p(d))-n+ 1, (2i+ 1)(2p(d))-ln+ 1), for O<-_i<-_d-1. The following lemmas list
the properties of canonical boxes that we shall require.

LEMMA 3. The number of canonical boxes of identical dimensions and of volume 2
is ridi.

LEMMA 4. Let 0 <= <-- (log2 n d2). Then the number ofpossibilitiesfor the dimensions
of a canonical box of volume 2in d- is f((log2 n/d2)d-), and at most (log2 n+d)d-1.

Proof The number of nonnegative integer solutions to

jl +j2 -t-. +jd + (d 1) logz n,

subjectto 0_-<j_-<log2n, <-l<-_d, i<-(logz n/d)

is at least (log2 n/d)d- for large enough n, and at most (log2 n + d)J- for any in
the desired range. That gives the required bound on the number of possibilities for
the dimensions of a canonical box of volume 2in d-1. [-]

LEMMA 5. Let b, bz, bp be canonical boxes ofvolume c such that

_
-1 be .

Then vol f"l f’ bi < p
i=1 a21 ,/,,i-,)

Proof For -< m _-< d, let

Lm {[rml(bj), rrz(bj))" -<j =< p}.

The intervals in Lr can be ordered by containment, and the ratio of the lengths of the
largest and the smallest intervals in Lm is 2 IL’’’l-l. Let IL*m] maxm ]Lml. By pigeonholing,
IL[ > pl/(d-,). Then

VOI( i=I b’) <= Oz21-1L’*’’l <= O:21-pl/’’’-’’"
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SPACE-TIME TRADE-OFFS FOR ORTHOGONAL RANGE QUERIES 753

LEMMA 6. Let be a fixed canonical box ofvolume ce. Then the number ofcanonical
boxes b of volume ce which satisfy the condition vol(bfq)>-2-)vol() is at most

(2j+d+l) ’-’.
Proof Since vol(b Fi g) >- 2-*vol() and vol(b) vol(g), for each m, _-< m -<_ d,

either rrm, (b), rrm2(b)) contains rm, (/), rrm2(/)) or rrm, (g), rrm2(/)) contains
[rr,,,(b), rrm2(b)), and

77"rn2(b)-Trml(b)__2j.2-,i_<_ _<

Thus for =< m _-< d, there are at most (2j + 1) possibilities for the mth interval defining
box b, and as the volume of the boxes b is fixed to be a the total number of possibilities
for the boxes b is bounded by (2j + d + 1)-. [-1

Having described canonical boxes, we shall proceed to almost uniform distribu-
tions of n keys. The distributions are termed almost uniform because the number of
keys in a canonical box does not deviate too far from the volume of the box divided
by n a-. For d 2, we can explicitly construct such distributions, and thereby get
Theorem 3. For d >_-3, we have to resort to counting arguments and show that the
number of distributions of n keys, which do not satisfy the properties in Theorem 4,
is less than the total of nn possible distributions.

THeOReM 3. For d 2, there is a set K of n keys such that for each canonical
box b,

na- ]b FI K[-<_ ] n-
Proof It is adequate to obtain a set K of n keys such that each canonical box of

volume n contains exactly one key. We use an inductive construction. Let x and x2
denote the two attributes of a key. Let K,, denote a set of m keys satisfying the
conditions in Theorem 3. We shall obtain Kzm from K Let

K’m {(2x,- 1, x2): (x,, x2) E Km}
and

K",, {(2x, X -[" m): (x,, x2) E K,,}.

We let K2m K’m U K"m. A canonical box of volume 2m and x dimension equal to 1
contains exactly one key, as each key has a distinct value for x. Let b=
[Xll X12 X IX21 X22 be a canonical box of volume m corresponding to n m, and let
b [2x- 1, 2X2-- 1) X Ix21 X22 and b2= [2x- 1, 2X12-- 1) X Ix21 q- m, X22-[- m). Then
b and b are canonical boxes ofvolume 2m corresponding to n 2m. If (x, x2) e b f-] K,,
then (2x- 1, x2) e b K’m and (2x, x2+ m) e b2CI K"m, and b, b2 do not contain any
other key in K2m. Furthermore, all canonical boxes corresponding to n 2m, of volume
2m and x dimension at least 2, may be derived in this manner from canonical boxes
of volume m corresponding to n m. gl

THEOREM 4. Let crn an be the number of distinct sets K of n keys, each key in N,
that satisfy the three properties given below. Then r tends to 1 as n tends to oo and
o=(1-o(1/n)).

(1) Let a(n)= 2p(log2 n). For each canonical box b,

vol(b)
<[bfqKl<6a(n) n-a(n)na- a(n)

(2) Each canonical box of volume na- contains at most log2 n keys.
(3) [J fq K[ _-> (n/(4(Zp(d))Za))= n/4(c3)2.
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754 PRAVIN M. VAIDYA

Proof The total number of possible key distributions (sets) K is n an. Let F, F2,
and F3, be the fraction of distributions that do not satisfy properties (1), (2), and (3),
in Theorem 4, respectively. We shall show that each of F, F2, and F3, is o(1/n).

To bound F note that, if there is a canonical box whose volume is not equal to

a(n)nd- and that violates property (1) above, then there is necessarily a canonical
box of volume a(n)na- that violates property (1) in the same manner. Let Fl be the
fraction of distributions K such that there is a canonical box of volume a(n)n a-1 that
does not contain a key in K, and let Fl2 be the fraction of distributions K such that
some canonical box of volume a(n)na- contains at least 6a(n) keys in K. Then

Fl----< F + Fl2. A bound on F may be obtained by noting that there are at most
n(log2 n+d)d- choices for a canonical box of volume a(n)na- and all the keys in
K must lie outside the chosen canonical box. Thus

FI =< n(log2 n + d)d- 1

<- O(n(log n)d- e-’)

An upper bound on F2 is obtained by observing that we may choose a canonical box
of volume a(n)na- in at most n(log2 n + d) a- ways, and we may choose 6a(n) keys
to lie in the chosen box and then let the remaining keys be located anywhere in
[1, n+ 1) a. Then

F2<n(log2n+d)a-’( n )(an)) 6’’)

6a(n)

_<- n(log n + d) d-1 (a(n))6an)
6a(n)!

_<--n(log2 n + d)d-l() 6a(n)

(using Stirling’s approximation)

Thus

F,_-< FI,+ F,2 o(1/n)+ o(1/n)= o(1/n).

A bound F2 is obtained as follows. A canonical box of volume nd- may be chosen
in at most n(log2 n + d) d- ways; then log2 n keys may be selected to lie in the chosen
box, and the remaining keys may lie anywhere in [1, n + 1)d. Thus,

F2_-< n(log2 n + d) d- n
log2 n

n(log2 n + d) d-

(log2 n)D
ow

nl
oa

de
d 

03
/2

8/
24

 to
 2

4.
18

.4
3.

38
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



SPACE-TIME TRADE-OFFS FOR ORTHOGONAL RANGE QUERIES 755

To bound F3, we choose (1-4-c2)n points to lie outside the canonical box J,
and let the remaining points be located anywhere in [1, n + 1) d. Furthermore, the
volume of J is rid/C3. Thus

(1 --4-c2)n

Using Stirling’s approximation for factorials and taking logarithms we get

n ( ( 4c3- 1)).-< + O(log n).logeF3 4c 1Oge(4C3)+(4c32 1)loge
4C--1

Then noting that 1Oge (1- X)<----X for 0< x =< 1, we get

n
log F3 4c] (lOge (4C3) + 1 4C3) -t- O(log n)

7n
<= 4el

-O(lgn) asc3_>--16.

Thus F3= o (1/ n [3

4. Proofs of lemmas. In this section we give proofs of Lemmas and 2 used to
prove Theorems and 2 in 2.1 and 2.2, respectively. For the purposes of this section
we shall let the set K of keys be fixed. For d =2 let K be a fixed set of n keys as
specified by Theorem 3, and for d >= 3 let K be a fixed set of n keys as specified by
Theorem 4. We assume that n is a power of 2. Let/3(c) denote the set of canonical
boxes of volume a, and let flj denote the set of those canonical boxes that are also
subboxes of J (for definition of J see 3).

Proof ofLemma 1. We shall give a proof for d >= 3, the proof for d 2 is similar.
Let x(T)=(64T(2p(d))2d). Let B(T, n) be the largest set of boxes satisfying the
following conditions:

(1) For all bB(T,n), b(x(T)a(n)nd-), and IbK[>-_6Ta(n).
(2) For any two boxes b and b2 in B(T, n), vol(bf’lb2)<=a(n)n a-.

By Theorem 4, the number of keys in K located in a canonical box of volume
x(T)a(n)n a-1 is at most 6x(T)a(n). It is then easily shown that the number of boxes
in ,8(x(T)a(n)n a-l) that have identical dimensions and that contain at least 6Ta(n)
keys is D.(n/(T log: n)). Then from Lemmas 4 and 6 in 3, we can conclude that
IB( T, n)l--f(n/T logz n(log n/log2 T)a-). The intersection of any two distinct boxes
bl, b2 in B(T, n) is a canonical box of volume at most (a(n)n d-) and so by Theorem
4, ]blf’lb2f’lgl<6a(n)<(1/T)min{lb, f’lgl, lb2flg]}. [3

In Model B, as we restrict ourselves to binary comparisons, the only possible
comparisons are those between two components of the input tuple, and those between
a component of the input tuple and a constant. We shall focus on canonical boxes
that are subboxes of the canonical box J. For each box b

_
J, the input tuple Q(b)=

(xl,x2, x2,x2," ,Xd,Xdz) is such that Xll <Xlz< x2 <x2<. "<Xdl <Xa2, and
so a comparison between two components of the input tuple has the same outcome
for each subbox b of J. Then, in Model B we need to analyze only comparisons between
a component of the input tuple and a constant. We note that, if the input tuple satisfies
a comparison between x., the (j)th component of the tuple, and a constant, when x.
takes on the value z as well as when x./ takes on the value z2, then the input tuple
satisfies the comparison whenever x./ takes on any value between z and z2. The
following lemma follows directly from these observations.

D
ow

nl
oa

de
d 

03
/2

8/
24

 to
 2

4.
18

.4
3.

38
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



756 PRAVIN M. VAIDYA

LEMMA 7. Let bl and b2 be subboxes of J. Let C be a conjunction of binary
comparisons, and let both Q(bl) and Q(b2) satisfy C. Let b be a subbox of J such that
either 7rij(bl) <- ro(b) <- 7rij(b2) or ro(b2 <- 7ri(b) <- 7ri(bl), for 1 <- iN d, <-j <-_2. Then
the tuple Q(b) also satisfies C.

LEMMA 8. Let be an integer greater than 1, let y be an integer greater than O,
and let rn be an integer such that <= rn <= d. Let C 7(C v C v v Ct_), where each

of Ci, 1 <=i <- t-1, is a conjunction of comparisons. Let bl, b2,..., b,+ be distinct
canonical boxes satisfying the following conditions:

(1) For all i, 1<_-i<-t+1,
(2) Each of the tuples Q(b), Q(b2),""", Q(b,+l) satisfies condition C.
(3) For all i, l_-<i-<t+l, rm2(b)-rml(bi)= rm2(b)-rml(bl).
(4) For all i, <- i<-_ t, rml(bi+l)-rm2(b) >- y(r,2(bl)-rml(b)).

Then there are at least y boxes b in flj (3 fl(a) such that Q( b) satisfies condition C.
Proof Let A([y, yz), m, b) be the box obtained by replacing the ruth interval

defining box b by the interval [y, y2). Note that I is the set of canonical intervals.
For l_-<i-<t, let

Ai {A ({y, y), m, bi): {Yl, Y2)e I, Yz-Y, 7rm2(bl)- rm,(bl),

7rm2(bi) Yl <y2 <- 7rml(bi+l)}.

Then IAI => y, and each box in A is a subbox of J and a canonical box of volume a.

There exists an such that for each box b in A, Q(b) satisfies C. Suppose this is not
true. Then there exist boxes b e A,, f2 e ai2, <- i, < i2 < t, such that both Q(/i,) and
Q(b) satisfy CI, for some l, _-< l_-< t- 1. Then by Lemma 7 it follows that Q(bi) must
satisfy C! and thereby not satisfy C which is a contradiction.

Proof of Letntna 2. We shall give a proof for d _-> 3, the proof for d 2 may be
constructed along similar lines. Fix a tree for the set of keys K. For the purposes of
the proof we shall restrict ourselves to canonical boxes that are subboxes of J. Note
that as K satisfies the conditions in Theorem 4 in 3, a canonical box in (nd-)
contains at most log2 n keys in K, and so the query time T for such a box cannot
exceed T’ log2 n. We shall show that if the conditions in Lemma 2 do not hold then
there must be a canonical box be fl(n d-l) such that Q(b) satisfies cond(v) for more
than T’ log2 n vertices v. Then the query time for b would exceed T’ log2 n, and that
would be a contradiction.

Let ]J f3 K csn, by Theorem 4 we know that such a c5 exists. For each key
k e J K, there are at least C4(1og n)d-1 boxes in flj (3 fi(n d-) that contain k, for some
constant c4 dependent on d. Let 6 2d T’ log n + 1)d (log2 n + 1) d+, and let ( T’, n)

2rc,l(T’)zlog2 n+d)d+36 Let c6 be a large enough constant such that
(T log n)C’?’-’>=2d(4o(’T’, n)+6) d. The constants cl and ez in Lemma 2 are given
by c c/2 and c2 c6/c4.

For each key k e K, let

r(k) {b: be(j(nd-’)),ke(bf3K)},

and let

P(k)={v’kedata(v),Zlbe-(k) s.t. Q(b) satisfies cond(v)}.

We note that for each box be -(k) there exists a vertex ve (k) such that Q(b) satisfies
cond(v). For each k e J VI K, [-(k)[-> c4(log n) d-, and 9(k)

_
V(k), where V(k) is

the set of boxes defined in Lemma 2 in 2.2.
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SPACE-TIME TRADE-OFFS FOR ORTHOGONAL RANGE QUERIES 757

Let K’ be the largest subset of J fl K such that

c4(log2 n) d-1

C6(1og2 T’+ log2 log2 n) d-l"

If IK’[ _-> c5n/2 then the conditions in Lemma 2 are satisfied. So assume that I(J V/K)
K’I_>-_ csn/2. With each key k in (J fl K)-K’ we can associate a distinguished vertex
x(k) and a distinguished set of canonical boxes A(k) satisfying the following condi-
tions"

(1) Ia(k)l>-c6(log2 T’+logzlog n) d-.
(2) A(k)

_
(3) /x(k) V(k).
(4) For all bA(k), Q(b) satisfies cond(tx(k)).

The query time for a box in [3(n d-) cannot exceed T’logz n, and hence for all
k ((J VI K)- K’), Idata(tx(k)) <= T’ log2 n. Then I{/x(k)" k ((J fl K)- K’)} =>
cn/2T’ log2 n. Let r/ be the set of all vertices u such that there are at least 6 vertices
in the set {/x(k)" k ((J VI K)- K’)} that are also present in the subtree rooted at v.
As the degree of each vertex in the tree is at most r (r a fixed constant),
cn/2r6T’ log2 n.

For a vertex u, let num (u) be the number of canonical boxes b such that b fi n d-)
and Q(b) satisfies cond(u). Suppose we can show that for each vertex u in
num(u) > O(T’, n). From the lower bound on the number of vertices in r/ it would
follow that , num(u)>=lrlltp(T’,n)> n(logz n+d)d+lT’.

Since I(nd-)l<=n(log2 n+d)d-, we could then conclude that there is a be fl(n d-)
such that Q(b) satisfies cond (u) for at least T’ logz n + vertices u in r/, and that would
be a contradiction.

Let u be an arbitrary vertex in r/ other than the root. We have to show that
num(u) >- 4’(T’, n). With u one can associate distinct keys kl, k, , ks in (J VI K)
K’, such that for each box b in U = A(ki), Q(b) satisfies cond (u). Let b(ki) CI bcA(ki b.
Then for _-< i<-6, b(ki) j, and b(ki) contains key ki. By Lemma 5, each of b(k)
has volume at most n"-l/(40(T’, n)+6)".

Among b(kl), b(k),..., b(k) we can find 2e(r’ log2 n+ 1)d(1og2 n+ 1) distinct
boxes of identical dimensions, say b, b,..., bl. This is possible since the number of
possibilities for the dimensions of a canonical box is at most (log n+ 1) d, and by
Theorem 4 each of b(k) can contain at most log2 n keys in K. Corresponding to
b,b,...,bl, for l_-<m_-<d, let

Lr {[,,(bi), rrr2(bi))" _-<j _-< 1}.

All the intervals in L are of the same length, and any two intervals in L do not
overlap. Let T’ log2 n. Suppose that for some m, _-< rn =< d, there exist + intervals
[r,,(b.,), rmz(b.,)), [rm,(b.2), rm2(bj)),’", [rml(bi,+,), rmz(bi,+,)), in L,, such that for
l<=q<=t, r,,l(bi,,+l)-Trm2(bi,,)>=tp(T’,n)(Trm(bi,)-Trm,(bh)). To each of these t+l
intervals [rml(bi,,),r(b,))there corre.sponds a distinct box /q. such that
[,,(/q), r,(bq))=[rm,(bi,,), rm(bj,)), bq([3jf3/3(nd-’)), and Q(bq) satisfies
cond(u). The pathlength from the root to u does not exceed t-l, and so we may
apply Lemma 8 to these + boxes and conclude that there are at least t)( T’, n) boxes
b in fi(n d-’) such that O(b) satisfies cond(u).
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We shall now show that there exists a required collection of T’ log2 n + intervals
in some set L,,. Assume that such a collection of intervals does not exist. Then for
each m, 1 _-< m =< d, all the intervals in the set L can be covered by T’ log2 n intervals,
each of length at most (2O(T’, n)+3)(Tr,,2(bl)-Tr,,(bl)). Each of the dT’ log2 n cover-
ing intervals is closed on the left and open on the right, and has integer end points in
the range 1 to n+l. It then follows that the boxes b, b2,’", bl, are them-
selves contained in the union of (T’log2n)d boxes, each of volume at most
(2d/(T’,n)+3)dvol(b). As each of b,bz,.. ",b contains a distinct key, and 1--
2d(T’ log2 n+ 1)d(log n+ 1), and vol(bl)<-(4d/(T’, n)+6)-dn d-l, it follows that there
is a box of volume at most nd- that contains at least 2d (log n + 1) keys in K. This
box of volume at most nd- can be covered by 2d canonical boxes of volume n a-.
Thus there must be a canonical box of volume nd- that contains at least logz n + 1
keys in K, and since K is a set of keys satisfying the conditions in Theorem 4 this is
not possible.

5. Conclusion. We have obtained space-time trade-offs for orthogonal range query
in two models, the arithmetic model and the tree model. Most data structures used in
practice are rooted trees and so it may be worth studying more problems in the context
of Model B. We conclude by raising questions related to the tree model.

(1) Drawing an analogy with decision trees, what happens when the conditions
associated with tree edges are allowed to be comparisons involving linear or higher
order polynomial functions of the input? Do the bounds weaken in such a situation?

(2) What kind of bounds can one obtain for queries other than orthogonal range
query, say circular range query or polyhedral query?

(3) Can the lower bounds in the tree model be extended to data structures that
are directed acyclic graphs?
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