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Abstract

We present an algorlthm for linear programming which
requires O (((m+n) n?+(m+nmt $p)L) arithmetic opera-
tions where m is the number of inequalities, and n is the
number of variables. Each opetation is performed to a preci-
sion of O (L) bits. L is bounded by the number of bits in the
input.

1. Introduction

We study the linear programming problem

max ¢’x

s.t. Ax = b

where A €R™ ", b€R™, and ¢ €R". We assume that the
polytope defined by Ax=b is bounded and has a non-zero
interior. As the polytope is bounded we can assume that
m=n, and that the columns of A are linearly independent.

A polynomial time algorithm for the linear program-
ming problem was first presented by Khachian [3] using the
ellipsoid method. Khachian’s algorithm requires O(m n3L)
arithmetic operations in the worst case, and each operation is
performed to a precision of O (L) bits where

L = logy(largest absolute value of the determinant

of any square submatrix of A}

+ log(max ¢;) + logy(max b;) + logy(m +n).
H I

In [2] Karmarkar presents an interior point algorithm which
requires ((m'3n*+m?n)L) arithmetic operations, each
operation being performed to a precision of O(L) bits. We
present an algorithm for the linear programming problem
which requires O ((mn?+m'*n)L) arithmetic operations in
the worst case, and it is adequate to perform each arithmetic
operation to a precision of O(L) bits. The algorithm
presented in this paper ii)hus faster than Karmarkar’s algo-
rithm [2] by a factor of Vm for all values of m and n. It is
also faster than Khachian’s ellipsoid algorithm by a factor of
n for m Sn , and continues to be faster than his algerithm
for m =< n*. (Typically, m and n are of the same order).
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In {5] Renegar gives an algorithm for linear program-
ming which requires O (m!>n?L) arithmetic operations. We
build on the ideas in [5], and obtain a faster algorithm. In
our algorithm we construct a sequence
PO, P, ... Pk ... of smaller and smaller polytopes
which shrink towards the optimal vertex (facet). During the
kth iteration, we move from the center of polytope P¥~1 to
the center of polytope P* by performing a local optimization
which consists of minimizing a linear function over an ellip-
soid. The t\)nl number of iterations performed by the algo-
rlth m L), and on the average each iteration requires

mn? + mn) arithmetic operations where the average is
taken over all the iterations. Thus the total number of arith-
metic operations is O((mn?+m'3n)L). When the algo-
rithm terminates we have a feasible point that is sufficiently
close in objective function value to the optimum over the ori-
ginal polytope, and we may then jump to an optimal solution
as described in [4] in O (mn?) arithmetic operations.

In section 2 we give an overview, and describe the rela-
tionship with related work [1, 5}. In section 3 we give the
algorithm. In section 4 we give some properties of the poten-
tials used to measure convergence, and in section 5 we
describe the local optimizations. In section 6 we show how to
amortize the number of arithmetic operations. In section 7
we show how to reduce any linear program to the format
required by the algorithm, and in section 8 we show that
O(L) precision is adequate for arithmetic operations.

2. An Overview
Let P be the given polytope

P={x:Ax=b}

and let B™* be the maximum value of the objective function
cTx over P, Let %, BL,, - ,B% - bea strlctly increas-

ing sequence such that Lim B" = B™*  Let w* denote the set
k-~

of linear inequalities {Ax>b cTx=pky, and P¥ denote the
polytope PX={x:Ax=b, cTx=p*}. Let af denote the ith
row of the constramt matrix A. The center of the system of
linear inequalities =¥ is defined to be the unique point that
maximizes the potential function

Ftex) = Sin(alx—b) + mln(cTx—BY)
=1

over the interior of the polytope PX. The center of w* is
unique since F¥(x) is a strictly concave function. We let w*
denote the center of the system ¥, Let f*(x) be the normal-
ized potential function given by f*(x) = F*(w*) — Fk(x).
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A isa strictly convex function. Furthermore, the value of
F¥*(x) at o* is not required for evaluating the derivatives of
f¥x), and for computing f*(y) — f*(z) for a pair of points y
and z.

The algorithm generates a sequence of points
2O, xt, - x% ... such that x* is in the interior of
polytope P¥, and x* is a good approximation to the center w*
of the system «*. Specifically, each x* satisfies the condition
F¥(x*y =< 0.04. We shall assume that B° satisfies the condition
max — @0 = 20 and that we have a point x° such that
f2(x%) =0.04. In section 7 we show how to transform the
given linear program so that a required starting point x° is
available. In the kth iteration, B* is computed as
k o pk-1 a T k-1
pt=p"""+ V;(c x
the bounding objective function hyperplane shifts due to the
change in B, x*~! may no longer be a good approximation to
the new center ¥, and so a local optimization is performed to
decrease the potential f¥(x) and obtain a better approximation
x¥ to the center wf. The local optimization consists of minim-
izing a linear function over an ellipsoid. The sequence
BC,BY, -+, Bk, - satisfies the condition

pmax—pk < (1—‘5'-)([3"‘“— B¥~1) for some constant o
m

dependent on «. So the corresponding sequence of systems

~B"'1), for some constant . As

% !, - - ,a%, -+ induces a sequence of smaller and
smaller polytopes P°, P!, --- Pk --. which shrink
geometrically towards the optimal vertex (facet). In

O(\/;n—L) iterations we obtain a point where the objective
function value is 27?%) away from the optimal value over the
original polytope P, and we may then isolate the set of con-
straints which define an optimal vertex of P [4].

We shall now describe how to find x* from x*~!. It
may be shown that if f¥~!(x*~1)=0.04 and o =30 then
fXx*"1y=0.05. Thus at the start of the krh iteration we
have a point x*~! satisfying the condition f*(x*¥~!)=0.05,
and we have to obtain a point x* such that f*(x*) =0.04. Let
D be an mXm diagonal matrix such that the ith diagonal
entry Dy satisfies the condition

Dy Let EX(r) be the

—_— =Dy s
1.1(afx* "1 =b)? (alxk~'=b)?

ellipsoid defined by
EX(r) = {x: (x=x*"HTG*(x —x*~1) = P2 xF 1)}

where

m
G* = ATDA + mrcc‘r

and r is a suitable parameter between 0 and 1. We note that
E*(r) is contained in the polytope PX. Let m* be the gradient
of f*(x) evaluated at x*~!. Consider the power series expan-
sion of f*(x) at x¥~!. Within the ellipsoid E*(r), the magni-
tude of the second order term in this series is bounded by
0.55r2 f*(x* 1), and the sum of magnitudes of the higher

0.1 fFF Y
. W :
1=0277) hereas the

minimum value attained by the first order (linear) term
within the ellipsoid is less than -~ 0.97 f*(x*~!). So minimiz-
ing (n")T (x — x* 1), the linear term in the power series, over
the ellipsoid E¥(») will decrease f¥(x) by approximately a fac-
tor of (1—0.9r+0.55r2). Let z%(r) be the point that
minimizes the linear function (n*)7x over the ellipsoid E kiry,
If 0.5=r=0.8 then z*(r) reduces the potential f*(x) by at
least 25% and f*(z%(r)) = 0.75f (x* 1.

order terms is at most

30

x* is computed as follows. From the theory of convex

functions 16), z5(r)—-x*"! satisfies the systern of linear equa-
tions
T —_—
(A DA + (CTJ:k-'l_Bk)Z
for some scalar #(r)>0. We first compute £*, a vector in the
direction of z¥(r)—x*"!, by solving the system of linear
equations

cchy (X r)~x*"1) = —1(r)n*

(ATDA + ccTy g = —nF

(cTxt-1-ghy2
Next, we find a scalar r* > 0 such that

m
(chk—l _Bk)Z
If 0.04=f*x*"1)=0.05 then x*~'+r*& minimizes the
function (n*)7x over the ellipsoid E*(rq), for some ry in the
range [0.6, 0.7], and fX(x*~! + F£5) 5 0.75 /5 (x* 1) = 0,04,
Thus either fA(x*~1) =0.04 or ff(x*~1 +1*£) = 0.04. I suf-
fices to let x* be that point where the potential f¥(x) is lower
among the two points x* ™! and x* ! + r¥g*,

0.018 = (t"2(£T (ATDA + ecTy £ = 0.0196

An algorithm based on the idea of producing a sequence
of shrinking polytopes together with a sequence of approxi-
mate centers was given by Renegar [5]. An approach based
on centers is also suggested in [1, 9] but without any analysis.
In developing our algorithm we follow Renegar's approach,
but there are two critical differences which enable us to
obtain a faster algorithm. First, closeness to the center of a
polytope is measured in a different manner. Renegar [5]
measures closeness to the center in terms of euclidean dis-
tance in a transformed domain, and shows that a local optimi-
zation decreases the distance to the current center. We meas-
ure closeness in terms of the potentials FXx). Second, the
local optimizations described in this paper are quite different
from Renegar’s [5], and can actually increase the distance
metric used by him in [5] to measure closeness to the center.
Finally, Renegar’s algorithm requires O (m'* n’L) arithmetic
operations. Measuring local convergence in terms of the
potentials f¥(x) allows us to amortize the number of arith-
metic operations, and obtain a bound of O((mn*+m'Sn)L)
on the total number of arithmetic operations performed by
our algorithm.

In [1] Bayer and Lagarias analyze an infinitesimal ver-
sion of Karmarkar's algorithm, and study trajectories leading
from each point to the optimum defined by taking infini-
tesimal steps. It is interesting to note that the points w°, w!,

: , of - lie on such a trajectory that would be gen-
erated by starting the infintesimal version of Karmarkar’s
algorithm at w®. Thus our algorithm could also be viewed as
efficiently following this trajectory to the optimum.

3. The Algorithm

In this section we give the actual algorithm. We assume
that we are given a B° such that ™ — B® = 290}, and an
x% which is close enough to the center w® of the system of
linear inequalities ©% = {Ax=b, cTx=B%). Specifically,
Fx% =0.04.

At the beginning of the krh iteration we have a parame-
ter B¥71, and a feasible point x*~! such that ¢Tx¥~1 > p¥-!,
and f*~'(x*~!):=< 0.04. We also have a diagonal matrix D
such that 1 1

—_—— = Dy & ———imeea . foOr
Liafxt=1—pp? = 7" 7 (alxk1—py?

i=1, -+ ,m During the kth iteration we perform the fol-
lowing computations in sequence.



— 1 - -
1. k:= Bk g (chk 1 _ npk l)_
B 30 v m B
2. Determine a direction £ by solving
T —_—m Typk = _ ok
(ADA+(Tk1Bk)ZCC)§ n.
where m* is the gradient of f*(x) evaluated at x*~!
3. Compute a scalar r* > 0 such that

0.018 = (M (€7 (47DA + z——,——k-_i’-f—_—ﬁ—k);ccf) € = 0.0196.
4, If frakle z* ) <ffxk Yy then xk = xA1 4 phgh
else x* ;= xk~1

S. Foreachz,lsiSm

1’

. 1 1.1
if (D < m) or (D;> T:b—)—z-)
—_1
(alx*—bp)?

The algorithm halts when ¢7x*—B¥=<2"% for some
prespecified constant 8 = 13.

then D,‘,‘ =

Each iterate x* is a good approximation to the center
w*, and satisfies the condition fY(x*)=<0.04. It is th \/_px
perty of the algorithm which leads to a bound of O(
on the number of iterations. Using this property we can
show the following Theorem.

Theorem 1, If m=16 then for all &k,
cIxk — pr = 0.4(p™ - pk).
From Theorem 1. it follows that,
max gk~ 04 ) (BT — pE-Ty and since
B B8 PPEVant (B BT

prax — g0 =201 cTyk— g% must fall below 27% in
O(VMm L) ierations. Thus the algorithm halts in O(Vm L)
iterations. From Theorem 1, it also follows that when the
algorithm halts, ™ — oTx¥=1.25x27%  Using the final
point generated by the algorithm an exact optimum ( an
optimal vertex ) may be computed in O(mnz) arithmetic
operations {4].

The proof of Theorem 1 is based on the following Lem-
mas. For the lemmas below we assume that m = 16.

Lemma 1. For all %,

ka — Bk = O.S(Bmax _ Bk) ,

and if f“(x) =< 0.04 then

cT(u" ~cTx - _04

cTw kgt ;2m l
Lemma 2. For all &, if f'(x*"')=0.04 then
Fix*1) =0.05.
Lemma 3. For all k, if 0.04=f%x*"'3=<0.05 then
FA* 1 + ke < 0.04.
Lemma 1 follows from Lemmas 4 and 5 which are proved in
section 4. Lemma 2 follows from Lemma 7 that is also
proved in section 4. A proof of Lemma 3 is given in section
5. From Lemmas 2 and 3, it inductively follows that for all
k, f*(x*)=0.04, Theorem } then follows from Lemma 1.
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4. Potential Functions
We shall study some properties of the potential

F(x) = ﬁln(cz,-rx—bi) + mlin(cTx —B)

i=1

and the point « that maximizes F(x) over the polytope

= {x:Ax=b, cTx=p}. We note that » is a unique
point since F(x) is strictly concave. Let f(x) be the normal-
ized potential given by f (x) = F(w) — F(x).

Lemma 4. For any point x in the polytope P®,
) (alx=b) Tx-8 _

mcx = 2m
7‘ Y
2 @lfw—b) cTw—B

and
cTo~B = 0.5(Tx—p).

Proof. Since the gradient of F(x) vanishes at w, taking the dot
product of the gradient at o with x —w gives

i al(x—w) ¥ ch(x—m) _

=) alw—b, cTo—B

Lemma 4 then follows. B

The next Lemma states that if x and w are close in
potential then the value of afx (as well as ¢7x) at x and at ©
can differ only by a small amount.

2 3
Lemma 5. If f(x) < —62— -y , where 0=<8< 1, then

3
Ty—al
—-———————ia’: a 0| =5, l<i=m,
ajw—b;
and
cTw—elx )
cTw—-g 75;
32 3
Proof. Suppose that f(x) =< > 3 where 0<8< 1. Let
alx—alw
Ui(x) = ———, for i=1,2, " ,m, and let
alw- ?
Yi(x) = _c_)_c__c_w_ for i=m+1, - - ,2m. First, we show
that
2m 2
Sun?ss (S,
i=1

As f(x) is smctly convex, the minimum value of f{x) over

the region {x: Eq; ()?=82, Ax= b, cTx= B} occurs on the

2m
boundary of the ellipsoid Z(8) = {x: 3 d;(x)?=8%}, We
i=1
shall lower bound the value of f (x) on the boundary of Z(3).
We have that

2m
fxy = = 3 In(I+dx)
i=1
Using the Taylor series expansion for In(1+y;(x)), within the
ellipsoid Z(8), f {(x) may be expressed as
2 (= 1))
f@=23— —

i=1)=1 i



From Lemma 4, E i(x) =
(— )j%(x)

0. Also, on the boundary of the

region Z(8), 2 E
im1j=4
of Z(d),

>0. Thus on the boundary

fx) > 2 —w (x)? - —w (0}

1-1

> 2¢<x)2(———)

im]

since |W,(x)| = 5.
[
2,282
>3 (2 3)‘
Then

(5.1). above then follows.

2m
> x| =8V2m

im]

2m
and since 3, ¢;(x)=0 we get that

im]

m T T
$ | =m-J———J-cx Cﬂ"’ 5Vmi2
i=m+1 To—

We note that Lemma 1 in section 3 follows from Lem-
mas 4 and S above.

Let F’'(x) be the defined
m
F'(x) = SIn(alx—b) + mn(c’x = B’), and let @' be the

i=1

point  that maximizes F'(x) over the region
{x:Ax=b, cTx=B'}. Let f'(x)=F'(w')—F'(x) be the
The next

normalized potential corresponding to F'(x).

potential as

lemma bounds the change in objective function value at the
center due to change in the parameter 3.

Lemma 6. Let B’ '=p.
o' —cTw=p’ ~B.
Proof. Given in [5].

The next Lemma bounds the change in potenrial at a
point due to change in the parameter 8.

7

Then c’ow' =zc¢’w and

Lemma 7. Let x be a point in the interior of the ‘polyto e

PB = {x:Ax=b, cTx =P} such that f(x)s%:-—%,

where 0<8<1. Let ' = B+7°‘-(c7x—p), where & = 0.
m
Then
5
f=sfe+ =
\/-2_(1——\;‘-)
m
2 5 o
(HV—)
+ * 2m
(1- a ol .
;m ;2m/

Proof. We may write f'(x) as
(cTx-B)cTw=B")
(cTx-p")cTw—B)

F )= f@)+ f(w)y + min(
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We have
(Tx=B)(cTw—-p")
(cTx—B" NcTw- B))
-1+ B =B)cTo=cTx)
(cTx=B'NcTw~B)

=i+ Ortn_s—/— . , * -+ (by Lemma 5).
V2(1—-7-°‘ )
m
Thus
(Lx B)cTw—p") ob
(cTx—B" WcTw—P) \/__O‘
2(1 v;;')
Next,
CT(o’-—E
cTw— B’
= cTw'—B (B B)(CTw —c (n))
cfw=p —B)(cTw-B")
T“’"B (B oy
S LR
crw B (CTQ)"‘B)(CT(O_.B') (byLCmma6)
214+ —0y2
do-p T
) ¥ - -+ (by Lemma 5)
4 W_B m(l__ o ad )
m ;2m
Then
f(w)
m T ./
= 3 In(—— ai o’ ) + mln(c_‘"__ﬁ_)
=1 aib.)"‘"
m T ./}, ,
= E(alrw b ~1) +m(C_T“’_"&
i=1 ajw=—b; T B’
T
moajw' b T —f
1=1 afm—-b,. m CTm—B - 2m
F o (1 ety (] — 2 08
RV g VY
From Lemma 4,
m aiT ! bi CT(‘);_B
21 afw—b, tom T p -2m=0
Thus
a?(1+ 8 2
fliw) = :Zm
(1 = = — OLB)
m :2m

We note that Lemma 2 in section 3 follows from Lemma
7 above.



§. Local Optimizations

In this section we describe the local optimizations, and
show that x¥, the point computed during the krh iteration, suf-
ficiently reduces the potential f"(x). We shall collect together
a few definitions. Let F¥(x) be the potential defined as

m
F¥x) = 3 In(alx—b,) + min(cTx—BF)
i=1
and w* be the point that maximizes F*(x) over the region
{x:Ax=b, Ix= B*}. Let fk(x) = F¥(w)~Fk(x) be the nor-
malized potential corresponding to F "(x). Let x*~! be the
point at the beginning of the kih iteration. Let n* be the gra-

dient of f*(x) evaluated at x*~!, and let D be a diagonal

1
1.1 (alxF"1=by)?
x* is obtained from x* ! as follows.

matrix such that =D =

.1
(alx*"1-b)*

1. Determine a direction £* by solving the system of linear
equations

m Ty gk k
(ATDA + = ccNH gk = —q
(Crxk I_Bk)Z

2. Next, compute a scalar ¥ > 0 satisfying the condition

0.018 = ("2 (T (ATDA + ccT) £ = 0.0196,

—m

(CTxk_l—Bk)2

3.0 I SR A E) <At then xbi=x* Tl 4 REE
else x¥ ;= x¥"1,

It is adequate to show that if f*(x*~!) exceeds 0.04 then

x*~1 4+ t* g sufficiently reduces the potential f*(x). The fol-
lowing lemma was introduced in section 3.

Lemma 4. I 0.04=fx*"1y=0.05 then
Far o+ k) =075 (k) = 0.04.

In this section we shall prove an alternate Lemma, i.e.
Lemma 8 below, and Lemma 4 will follow as a consequence

of Lemma 8. We shall require some additional notation. Let
E¥(r) be the ellipsoid

EXry = {x:(x = 2F DTG (x —x* 1) = 22}

where
k — 47T m T
G = A‘DA + -—-—-———(CTxk_l_Bk)z cc

and r lies between O and 1. wret z¥(r) be the point kthat
minimizes the linear function (n")Tx over the ellipsoid E“(r).
Let H* denote the Hessian of f*(x) evaluated at x*~}. Note
that H* may be written as

m 1 T m
H* = - a;a; + — cct.
E (afx*1-p)? (eTxk~1-gh)?
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2 53
Lemma 8. Suppose that 0<fix*"l)= %- -8

3’
0=38<1. Then
f*(zk(r)) = (1 - p.r+0,55r2 +vr3)fk(xk‘l)’

where

where

v(1-8)

= g
[“(,?o GIDGY )]

=

o~

and
= (1_1)3/2 \/fk(xk-l)
3= Virfteth)

Before proving Lemma 8, we shall show how Lemma 4
follows from Lemma 8, As z¥(r) minimizes (v*)Tx over the
ellipsoid E*(r), from the theory of convex functions [6], it
follows that z*(r) —x*¥~! satisfies the system of linear equa-
tions

m -~
(ATDA + mz-ccr) (Zk(r) —x* 1) = =1(r) T]k ,
for some scalar r(r)>0. So &, the direction computed dur-
ing the kth iteration, and z%(r) —x*~! are in the same direc-
tion. Furthermore, when f*x*~!) is in the range
[0.04, 0.05], x*~! + t* gk equals z%(rg), for some rq in the
range [0.6, 0.7]. So from Lemma 8 we may conclude that
if 0.04 = fX(x*~1) = 0.05 then
R+ ey <075 /4 (xF 1) s 0.04.
We shall now give a proof of Lemma 8.

Proof of Lemma 8. Let x=x*"1 + £, Using a power series
expansion at x¥~1, fX(x*~1 + r ) may be written as

2
PR rgy = bl + (e + iz—gfﬂ"g

+ o (=Y ( 5”: (af &) m(cTE) )
j=3 f=1 (alx*"l=b)l  (eTxkV - pRy
. 1 1.1
Since =D;=< ,
L1(alx*~1=p)2 = U7 (alxk-T—py)?

2 2
Foerpgky < 1107 ro7 —n T

2 ECH'E s 5 E(ADA+ Tty cch)E,
and so within the ellipsoid E*(r) the magnitude of the second
order term in the above series is upper bounded by
0.55r2 fk(x*~1). Next, we bound the sum of the magnitudes
of the third and higher order terms in the power series for an

arbitrary point x*~! + ¢ £ in the ellipsoid EX(r).



= (=1, ; (al &)/ m(cTe)
|/§-:3 i (21 (alx*"1—by)/ (crx""l--B")’)|

<3 %(l.lrzf"(xk’l))"’z

=3
< (1.1)3/2 r3 \/fk(xk—l)
3 a-Viuet)

Having upper bounded the sum of the magnitudes of the
second and the higher order terms in the power series for
points in E* (r), we shall lower bound the maximum change
in the linear term that is possible within the elhpsmd E*(r).
Such a bound is prov1ded by Lemma 9. Let x’' be the point
where the line joining x* ™! and * intersects the boundary of
the ellipsoid E¥(r). By Lemma 9,
(MO’ = xk 71y = = pr Rk

Since (m*)7z%(r) = (n*)"x’, Lemma 8 follows from Lemma 9
and the upper bounds on sum of the higher order terms in
the above power series. &

FACIRDY

Lemma 9. Let x’ be the point where the line joining
and «f intersects the boundary of the ellipsoid E*(r). If

0< fhxk- l)<-i— L

xk-1

, where 0=58<1, then

3
T =y s - pr ik
V({1-9)
where u = T
27
1.1¢( _")
,E:o G+DG+2)
Proof. Let x*~!—x’ = Au, where u is the unit vector in the
direction of x*“1—x’, and A = lIx* "' —x'il,. We have
m -
Mul(ATbA + m;ccr)u = riff(xk 1y,

1 1.1

Since =D;= ,
1.1¢alxk~1=p)? T (@l —p)?

MNuTHYY = —11—1r2fk(x"_l).

Thus

Hence

k)T(xk—l_xl)

(m

= —%—l (“k)r("k ) L9.1).
1.1 \/f*(xk l)\/(xk Lo BTk (k=1 = oFy
alxk =1 al ok
Let y; = -————-——b—, for i=1, - ,m, and let
oTak— 1_c5‘mk !
y,-=———fott=m+1, - ,2m,. Then

cw-—Bk

(MO (x* 7 - wf) = 2(——1%
im]
2m
(xk—l_wl')THk(xk—l_wk) = 2 (_____ - 1)2 ,
im]

and

Aty = St
i=]

+yi

From Lemma 4 in section 4,

2m
2}'1 = 0
=]
; ko k-1 < 02 _ 8
Since fX(x*"!)= — — 3 where 0=8< 1, from Lemma 5

in section 4 we get that
vl =8, i=12, - ,2m.

We can thus apply Lemma 10 below, and from (9.1). above
conclude that

(M7 =ty = kY V({i—-8)

1
[ (Eo (J'H)(J 2) ’]

Lemma 10. Suppose that Ey,-- =0, 2 In(1+yp) <0,

i=] i=1

and |y [=s8<1, fori=1,2, ,2m. Then
22'"<——1———1)_(1 5 S (12,
275 PARTSY
and
,%l“(n
Sy ne Y

]§0 G+DG+2)

2m
Proof. Since 3, y; =0,
i=1

--l = ( 1) =
rgl( l+yf ) ;2:1 yl i1 1+)’:
So as |y;| =8,
1 y?
(—— -1 =(1-9)
Ex 1+y; 2:1 (1+y)?
1-8 —t 1)?
= ( ) E ( o,
2m
Next,as 3y, =0,
i=1
2m
Eln( = 3 (o~ In(1+y))
i=1 i=1
_ yi o (1+y) (i = In(1+))
¥ ¥0,1<i=m 1+y, yiz



Using the Taylor series expansion for In(1+y;), for y;#0 we
get

(1+y)(yi — In(1+yy))
y?

P (_I)Jﬂy{
S G+ +2)
&/

S GHDG+2)

+

N =

Mz

, as |y|=8.

Thus

2m 1 x / 2m 2
Eln(l_#y‘)s [/2 8 ]2( yi )

i=1 ] o UthH(y+2) o 1ty
Lemma 10 then follows. &

6. Amortizing the number of arithmetic operations

In this section we show that the total number of arith-
metic  operations performed by the algorithm s
O({mn*+m'3n)L). The amortization of the number of
arithmetic operations is similar to the one in [2]. The total
number of arithmetic operations is determined by the number
of operations required for the following computations.

1. Solving systems of linear equations to determine the
directions X,

2. Computing the gradients n* of the potentials f*(x) and
computing the scalars z*.

In the krh iteration we determine a direction £ by solv-
ing the system of linear of equations
T m Ty gk = _ Kk
(A‘DA + (T 1 ph? cc') n
where m* is the gradient of f*(x) evaluated at x*~!, and we
find a scalar ¥ such that
m
0.018 = (tH2 (£5)T (ATDA + mcﬁ) g = 0.0196
The gradient n“ can be computed in O (mn) operations, and
once we have £, a required r* may also be obtained in
O(m operations. The total number of iterations is
O(VmL). So the total number of operations required to
compute n* and scalar * over all the iterations is
O(m!'3nL). We maintain (ATDA)~! and update it whenever
the matrix D changes. Once (ATDA)"1 is available,
m - .
(ATDA + mccT) ! may be computed in O(n?)
operations as the two matrices differ by a rank one matrix,
and then & may be obtained in O (n?) extra operations. We
shall show that the total number of operations required to
maintain (ATDA)‘l during the entire execution of the algo-
rithm is O(mnzL), and then the desired bound on the total
number of arithmetic operations performed by the algorithm
would follow.

At the end of the krh iteration D is updated as follows.

For i=1, - ,m, the ith diagonal element D; is reset to
1 .

————— if D;£[ , - .

(afx*~b)? TG by by
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x* —x*"HT(ATDA +

Suppose that D' is the matrix obtained by changing the ith
diagonal element of D to d'. Then

AT™D'A = ATDA + (d' —Dy) qat

Thus whenever an element of D is changed, A7DA changes by
a rank one matrix, and hence (ATDA)‘1 changes by a rank
one matrix. Therefore when an element of D is changed,
(ATDA)™! may be updated in O(n?) operations, using th
rank one update formula

(B+uvr)"1 =Bt~ ___g___)_(B'lu) Bl T.
1+viB~iy

So 1o obtain a bound of O(mn?L) on the total number of
operations required to maintain (A7DA)~!, it is sufficient to
show that the total number of changes to the matrix D during
the entire execution of the algorithm is O (mL).

Let

alx*-b,
alx*~1-p,
Suppose Dj; was reset at the ith iteration and at the Jrh itera-
tion but was not reset between the itk and jeh iterations.

Then &f 2 In(1.1), and the total number of times D, is
k=l+1
!
changed during the execution of the algorithm is O( > 6f),
k=1
where [ is the number of iterations performed by the algo-
rithm. IThus, the total number of changes to D is
m
0(3 = ¢h).

i=] k=1

&f = |In( ).

m I
A bound on 3 3 & may be obtained as follows. x*
i=1k=1
lies within an ellipsoid around x*~!, and x* — x* ! satisfies
the condition

(crxk‘-"?_sk)z'CCT) (k- x*71) =< 0.0196

Since at the start of the krh iteration, for i=1, -, m,
1 1.1
Dy el , , it f
it 1.1(a,~7x"‘1—b,»)2 (a,Tx"""-bi)z] it follows that
T k
m ajx"—b;
( - 1)) =1.1x0.019,
igl alx¥=1-p, )
and thus
T,k
m ajx"—b;
S (= e 1) =1.1%0.0196% Vi .

a,-Tx"—l—b,»

i=1

Then using the taylor series expansion for the natural loga-
m

rithm, it is easily shown that > &fF = 0(Vm), and since 1,
i=1

the n}lmber of iterations, is O (VYm L) we may conclude that

m
> 3 of=o00mL).

i=1 k=1



7. Recasting a linear program into the required format

In this section we show how to transform the given
linear program so that a suitable starting point for the
transformed program is available. There are several ways to
carry out such a transformation. The one we give is similar
to the one in [S]. The given linear program is

max pTx
s.t. Hz=gq

where z €R™', p €R", g €R™, and H €R™ ™. We reserve

A, x, b, and ¢ to refer to a linear program that is already in
the required format. Let

L, = logy(largest absolute value of the determinant
of any square submatrix of H)

+ logy(max p;) + logy(max ¢;) + loga(my+ny).
! i

Note that

1. If the given linear program has an optimal solution then
every optimal vertex z% satisfies the condition
HzoPHl, < 281,

2. If the polytope {z:Hz = q} is unbounded then there is a
feasible solution z/ such that 11z/1l. < 2.

Let r€R, let e€R™ be a vector given by
eT=[1,1, -, 1}, let \=m,;n;2"57, and let =21 Let
hi denote the ith row of H. The transformed linear program
is as follows.

max pTz + wr

st hlz— (Atgir= N, i=1,2,-,m,.
—eTHz = -\
iz =N, j=1,2,- 0 ny.
—-z;= -\, j=12, - ,ny.
—A = —A

((m+DN+eTg)r = -

Letm=m;+2n,+3,and let n=n;+1. Let A €R™*" denote
the constraint matrix, b ¢ R™ denote the right hand side of
the constraints, ¢ € R" denote the objective function vector,
and x € R” the variables in the transformed problem. Note
that ¢” = [p7, ], and x7 = {z7,7]. The tranformed linear pro-
gram may be written as

max ch
s.t. Axzb.

The transformed problem has the following properties.
1. Since ((m+1)A+eTb)>0, r is bounded, and thus the
polytope {x:Ax = b} is bounded.
2. Let
L = logy(largest absolute value of the determinant
of any square submatrix of A)

+ logz(mlax ¢;) + logy(max b;) + loga(m+n).
i

Then L=40L,. The bound on L follows from the

observations that the largest absolute value of the deter-

minant of any square submatrix of A is at most

(my+n7)%2%" and that mjclbeSmln]ZZL‘, and that

I

miax s 2%,

3. 0 is feasible. Since the sum of the rows of A is the zero
vector and all the coordinates of b have the same value,

m
the gradient of the function 3 In(alx—b;) vanishes at
im]
0. Furthermore, as the polytope {x:Ax=b} |is
bounded, O is the unique point that maximizes the func-
m o
tion ) In(afx—b).

i=]

z
4. A point [1] is feasible for the transformed linear pro-

gram iff Hz=gq, eTHz=\, and

—>\5st7\.
j=12, - ,n.

5. w is large enough so that if there exists a feasible point
with r =1 then every optimal solution has r=1. This is
because the minimum vertex to vertex variation of the
function .t exceeds the maximum change in the function
pTz over the entire polytope {x:Ax=b}.

We shall now show that O is an adequate starting point
for running the algorithm in section 3 on the transformed
problem. Let B = —m32%, Let

m
Fo(x)= 3 In(alx—b) + min(cTx—B?, and «° be the point
=1

that maximizes I;ogx). DSince the magnitude of PO is large
enough |mln(£_r9__%)|sﬁ,- for any point x in the
cix—

transformed polytope. Thus, F%?% - F%(0)=0.04 as
required, for m = 4.

Finally, we have the following easily shown lemma.
70P¢

Lemma 11. Let {

t"”'] be an optimal vertex in the transformed

linear program.

1. If 1" < 1 then the original linear program is infeasible.

2. If P =1, eTHzP <\, and |29l <X\,
j=1,2, - - - ,ny+1, then z%" is an optimal vertex in the
original linear program.

3. If =1, and ecither [z{P|=\, for some j, or
eTHzP =\, then either the original problem is
unbounded or z is an optimal solution. In this case the

transformed problem is solved again with A replaced by
z -
2\ to obtain a new optimal point | . If pTz" > pT%

then the criginal problem is unbounded, otherwise z%
is an optimal solution. B
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8. Precision of arithmetic operations

The error in the solution of a system of linear equations
is directly related to the conditon number of the matrix
describing the system, and the precision used for arithmetic
operations {7, 8]. In the first part of this section we show
that the entries in the matrix D at each iteration are upper
and lower bounded by 213 and 27% respectively, and that
the condition numbers of the matrices arising during local
optimizations are upper bounded by 2°%. Using these
bounds on condition numbers we shall argue that it is ade-
quate to maintain (A7DA)”! to an accuracy of vL bits for
some constant v. Then in the second part of the section we
describe how sufficient accuracy in (A’DA)~! may be main-
tained during rank one changes using O (L) bits of precision.

8.1. Condition number of local optimization matrices.

As before let x¥71 be the point at the beginning of the
keh iteration. During the krh iteration we determine a direc-
tion £ by solving the system of linear equations

T m Tygk o ik
(A'DA + —-————-—(CTxk_l_Bk)z cch)E 7

where D is a  diagonal  matrix such  that
1 1.1
D;el s , and
! l.l(air,\’k_l‘"b") a{xk”l—b,’]
m
: 1 . .

~n = - a; + - ¢ is the gradient of
,-gl alx*"1—p, ' Txk=t—p, ¢

F¥(x) evaluated at x*~'. We maintain (A7DA)~! by perform-

ing rank one changes, and compute

(ATDA + ceD)"! by a rank one change to

(ATDAY ™Y,

We shall first bound the entries in D. Note that the
absolute value of aflx—b; and ¢Tx for all feasible x is upper
bounded by 2*. Moreover, we may assume that
eTx*~1—p¥=1>2-13L (since the algorithm halts when

cTxk—p* is less than 2713L). Next, we shall lower bound the
value of alx*"1—p,, for 1=i=m. Let B¥~! be obtained by
rounding @*~! to 15L bits. A vertex of the polytope
{x:Ax=b, ¢Tx=F7!} has rational coordinates with a com-
mon denominator which is most 2!%, and so the maximum
change in the value of alx—b; over this polytope is at least
276L Thus, the maximum value of afx—b; over the
polytope {Ax=b, cTx=8* "'} is at least 27'¢*. Then from
Lemma 4 in section 3,

1 2—16L
a,'rwk‘ -b=

’

2m

where w*~! is the point that maximizes F*¥~1(x). Further-
more, as F¥ " Ywf Ny =Ff 1(x*~1)<0.04, from Lemma 5 in
section 3 we get that

T k-1 278
ax - b,‘ = 7‘
for m=16. Thus we may conclude that the entries in D are
upper and lower bounded by 2'5¢ and 2% respectively.

[}
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We shall now obtain bounds on condition numbers.
Note that the condition number of a symmetric positive defin-
ite matrix is just the ratio of the largest to the the smallest
eigenvalue, and that D, ATDA, and

ATDA + WCCT' are symmetric positive definite
matrices. An elementary arguement using rayleigh quotients
[7, 8] shows that the condition number of A’DA is bounded
by the product of the condition numbers of ATA and D.
Furthermore, a straightforward calculation shows that the
condition number of ATA is at most 2’2, So from the above
bounds for entries in D we may conclude that the condition
number of ATDA is at most 22%2, A similar calculation gives
a lower bound of 273 on the smallest eigenvalue of A'DA,
and an upper bound of 2° on the largfst eigenvalue of
ATDA. This in turn leads to a bound of 2°°F on the condition
m

of ATDA + chr.

Let v be fixed constant greater than 100. We maintain
an approximate inverse (A7DA); ! such that

(ATDA)™ ! = (ATDA);! + A

where 1iAll, =27%*, Then, from the above bounds on condi-
tion numbers,

m(ATDA) 7 lecT(ATDA) !

AaTpay;! -
¢ 1+mcT(ATDA); ¢

m
(chk—l _Bk)Z

where HA'll,=27%740L Once the approximate inverse

= (ATDA + ceDH)™V + A’

(ATDA)]! is available, x*~1+r¥¢* is obtained as follows.
The gradient n*, the approximation to
(ATDA + |

ccT)~! given by the above formula.

. R
(cTxk-T—gk)?
the direction £, and the scalar t* are all computed using 2vL

bits of Erecision, and at the end each coordinate of the point
x* =1+ 1*¢k is rounded off to 40L bits.

Finally, as {Im*ll; = 2?2, and r* = 2%, it is easily shown
that the error in x*~1+¢*¢% s 0(274%). Then the potential

difference between the computed and the exact value of
x4 tkER js neglible.

8.2. Maintaining accuracy in the inverse

Here we shall briefly describe how to maintain accuracy
in (ATDA)™! during rank one changes. Let B denote
(ATDA)~!. Suppose we have an approximate inverse B’ of B
such that BB'=I+E;, and HE;=2"""  Then
B’ =B '+B !E,, and IB'E I, s 2" L 45 the condi-
tion number of B is at most 22, A good approximation to
(B + uvT)"! is computed as follows.

1. Compute an initial approximation
v g B'wy(B'WT
1+v'B'u

2. B+wh(B")=I+E,+E;, where E, is a constant
rank matrix computable in 0(n?) operations. An ade-
quate approximate inverse of B is obtained by rounding
the entries in B’ — B’ E, to multiples of 27k



Let B —=B''E,+E; be the computed approximate inverse.
Then

(B+uwT)(B"” ~B""E,+E3)
=I1+E;~(E|+E)E; + (B+wh)E;.

We note that the condition number of ATDA is bounded by
28L 1t is then easily shown that I1E; Il 252 E, [I,. So
we may choose vy, and v, large enough so that [|EZ1l,, and
[1(B +uvT)E3 I, are each less than 27X E, Il,. Then

HE2(E)+E2) + (B+uwDE;ll, < (1+0(2 k)27t
and the error in B! grows very slowly.

9. Conclusion

We have presented an algorithm for linear programming
which requires O(((m+n)n?+ (m+n)!*n)L) arithmetic
operations where m is the number of constraints, and n is the
number of variables. Each operation is performed to a preci-
sion of O(L) bits. L is bounded by the number of bits in the
input.
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