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Abstract 
WC present an algorithm for linear programming which 

requires 0 ( ( (m +n) n2 + (m +n)‘-’ n) L) arithmetic opera- 
tions where m is the number of inequalities, and n iS the 
number of variables. Each operation is performed to a Preci- 
sion of O(L) bits. L is bounded by the number of bits in the 
input. 

1. Introduction 
We study the linear programming problem 

max cTx 

s.t. Ax 2 b 

where A c R”‘“, b G Rm, and c E R”. We assume that the 
polytope defined by Ax 2 b is bounded and has a non-zero 
interior. As the polytope is bounded we can assume that 
m 2 n, and that the columns of A are linearly independent. 

A polynomial time algorithm for the linear program- 
ming problem was first presented by Khachian [3] using the 
ellipsoid method. Khachian’s algorithm requires 0 (m n3 L) 
arithmetic operations in the worst case, and each operation is 
performed to a precision of O(L) bits where 

L = logz(largest absolute value of the determinant 

of any square submatrix of A) 

+ logz( max ci) + logz( m;x b,) + logz(m +n). 
I 

In [2] Karmarkar presents an interior point algorithm which 
requires ( (m ‘,’ n2 I- m2 n) L) arithmetic operations, each 
operation being performed to a precision of O(L) bits. We 
present an algorithm for the linear programming problem 
which requires 0 ( (m n2 + m ‘J n) L) arithmetic operations in 
the worst case, and it is adequate to perform each arithmetic 
operation to a precision of O(L) bits. The algorithm 
presented in this paper is 

2 
us faster than Karmarkar’s algo- 

rithm [2] by a factor of m for all values of m and n. It is 
also faster than Khachian’s ellipsoid algorithm by a factor of 
n for mSn2, 
for m 5 n4. 

and continues to be faster than his algorithm 
(Typically, m and II are of the same order). 
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In [S] Renegar gives an algorithm for linear program- 
ming which requires O(m’,’ n2L) arithmetic operations. We 
build on the ideas in [S], and obtain a faster algorithm. In 
our algorithm we construct a sequence 
pO,p’, ,pk, . . of smaller and smaller polytopes 
which shrink towards the optimal vertex (facet). During the 
krh iteration, we move from the center of polytope Pk-’ to 
the center of polytope Pk by performing a local optimization 
which consists of minimizing a linear function over an ellip- 
soid. The to number of iterations performed by the algo- 
rithm ’ 
0 ( t/” 

0( vf”’ m L), and on the average each iteration requires 
m n2 + m R ) arithmetic operations where the average is 

taken over all the iterations. Thus the total number of arith- 
metic operations is 0( (mn2 + m’.‘n)L). When the algo- 
rithm terminates we have a feasible point that is sufficiently 
close in objective function value to the optimum over the ori- 
ginal polytope, and we may then jump to an optimal solution 
as described in [4] in O(mn2) arithmetic operations. 

In section 2 we give an overview, and describe the rela- 
tionship with related work [l, 51. In section 3 we give the 
algorithm. In section 4 we give some properties of the poten- 
tials used to measure convergence, and in section 5 we 
describe the local optimizations. In section 6 we show how to 
amortize the number of arithmetic operations. In section 7 
we show how to reduce any linear program to the format 
required by the algorithm, and in section 8 we show that 
0 (L) precision is adequate for arithmetic operations. 

2. An Overview 
Let P be the given polytope 

P = {x:hr b} 

and let pmsx be the maximum value of the objective function 
c’x over P. Let PO, p’. , , pk, . . be a strictly increas- 
ing sequence such that 5;‘: p k = pm”“. Let nk denote the set 

of linear inequalities {Ax 1 b, cTx 2 pk), and Pk denote the 
polytope Pk = {n:Ax 2 b, c’x 5 pk}, Let af denote the irh 
row of the constraint matrix A. The center of the system of 
linear inequalities 7~~ is defined to be the unique point that 
maximizes the potential function 

Fk(x) = sln(a:x-bi) + mln(c’x-pk) 
f=l 

over the interior of the polytope Pk. The center of 7fk is 
unique since Fk(x) is a strictly concave function. We let wk 
denote the center of the system 7~~~ Let p(x) be the normal- 
ized potential function given by fk(x) = @(ok) - Fk(x). 
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fk(x) is a strictly convex function. Furthermore, the value of 
Fk(x) at ok is not required for evaluating the derivatives of 
p(x), and for computing fc(y) --f(r) for a pair of points y 
and t. 

The algorithm generates a sequence of points 
xO,x’, . . . ,xk, . . . such that xk is in the inter:ior of 
polytope P k, and xk is a good approximation to the center tik 
of the system nk. Specifically, each n’ satisfies the condition 
~~Xk’_~P~.0J.20W; shall assume that pa satisfies tv condition 

and that we have a point x such that 
p(x”) 5 0.04. In ‘section 7 we show how to transform the 
given linear program so that a required st:arting point x0 is 
available. In the krh iteration, pk is computed as 
pk = pk-1 + $yx”-1 -pk-‘), for some constant (x. As 

the bounding objective function hyperplane shifts due to the 
change in p, xk-* may no longer be a good approximation to 
the new center gk, and so a local optimization is performed to 
decrease the potential fk(x) and obtain a better approximation 
xk to the center tik. The local optimization consists of rninim- 
izing a linear function over an ellipsoid. The sequence 
pO,pl, . . . ,pk, . . satisfies the condition 

P max-13k 5 (I-*)cp”“” - pk-‘) for -some constant (Y’ 

dependent on o; So the corresponding sequence of systems 
7r0,d, . . ,7T, ... induces a sequenc,e of smalle:r and 
smaller polytopes PO, P1 , . . , Pk, . . which shrink 
geometrically towards the optimal vertex (facet). In 

O(GL) iterations we obtain a point where the objective 
function value is 2-OtL) away from the optimal value over the 
original polytope P, and we may then isol.ate the set of con- 
straints which define an optimal vertex of P’ [4]. 

We shall now describe how to find xk from .xkml. It 
may be shown that if ~-‘(nk-‘) 50.04 and IX 430 then 
fk(xk-’ ) 5 0.05. Thus at the start of the krh iteration we 
have a point .rkml satisfying the condition fk(xk - ‘) 2s 0.05, 
and we have to obtain a point xk such that f(xk) 5 O&l. Let 
D be an m xm diagonal matrix such that the ith diagonal 
entry Dii satisfies the condition 

1 1.1 
l.l(a~Xk-l-bi)z 

5 DJ, 5 
(Jxk-’ -bi)2 ’ 

Let Ek(r) be the 
L 

ellipsoid defined by 

E’(r) = {x: (~-,x~-~)~G~(x-x~-‘) 2: r2fk(xk-‘),} 

where 

Gk = ATDA -I- 
m 

T k-l-pkfccT (c x 
and r is a suitable parameter between 0 and 1. We note that 
Ek(r) is contained in the polytope Pk. Let vk be the gradient 
of f(x) evaluated at xk-’ . 
sion of p(x) at x&-l. 

Consider the power series expan- 
Within the ellipsoid Ek(r), the magni- 

tude of the second order term in this series is bounded by 
0.55r2fk(xk-‘), and the sum of magnitudes of the higher 

order terms is at most 
0.1 r3fk(Xk-r 

(I - 0.27rl 
1. Whereas the 

minimum value attained by the first order (linear) term 
within the ellipsoid is less than -- 0.9rfk(xke1). So minimiz- 
ing (rlk)z(x - xkel ), the linear term in the power series, over 
the ellipsoid Ek(r) will decrease f(x) by approximately a fac- 
tor of (l- 0.9r + 0.55r’). Let z&(r) be the point that 
minimizes the linear function (T)~)~x over the ellipsoid Ek(r). 
If 0.5 5 r SO.8 then zk(r) reduces the potential p(x) by at 
least 25% and fk(r’(r)) d 0.75&x’-‘). 

xk is computed as follows. From the theory of convex 
functions [6], zk(r)-x’-’ satisfies the system of linear equa- 
tions 

(ATDA + --m- (CTa;k-l-pk)2 
ccT)(zk(r)-xk-l) = -- r(r)rjk 

for some scalar t(r) > 0. We first compute Sk, a vector in the 
direction of zk(,r)--xk-‘, by solving the system of linear 
equations 

(ATDA + 
m 

(CTXk-’ -pk)Z 
&j gk = - .$ 

Next, we find a scalar rk > 0 such that 

0.018 I (rk)2(.$k)T(ATDA + cCTxk -:- pkj2 ccT)l;& I 0.0196 

If 0.041fk(x~-~) I 0.05 then xk-t + rkgk minimizes the 
function (+Q&)~x over the ellipsoid Ek(ro), for some r. in the 
range [0.6, 0.7]., and f&(x&-’ + rk Sk) 5 0.75fk(nk-‘) 5 0.04. 
Thus either fk(x,‘-‘) s 0.04 or fk(xkwl + tk Ek) 5 0.04. It suf- 
fices to let rk be that point where the potential fk(x) is lower 
among the two points xkml and xkwl + fkek. 

An a1gorith.m based on the idea of producing a sequence 
of shrinking polytopes together with a sequence of approxi- 
mate centers was given by Renegar [S]. An approach based 
on centers is also suggested in [I, 91 but without any analysis. 
In developing our algorithm we follow Renegar’s approach, 
but there are two critical differences which enable us to 
obtain a faster algorithm. First, closeness to the center of a 
polytope is measured in a different manner. Renegar [5] 
measures closeness to the center in terms of euciidean dis- 
tance in a transformed domain, and shows that a local optimi- 
zation decreases the distance to the current center. We meas- 
ure closeness in terms of the potentials f&(x). Second, the 
local optimizations described in this paper are quite different 
from Renegar’s [5], and can actually increase the distance 
metric used by turn in [S] to measure closeness to the center. 
Finally, Renegar’s algorithm requires 0 (ml.’ n2L) arithmetic 
operations. Measuring local convergence in terms of the 
potentials P(x) allows us to amortize the number of arith- 
metic operations, and obtain a bound of 0 ( (m n 2 + m I.’ n) L) 
on the total number of arithmetic operations performed by 
our algorithm. 

In [l] Bayer and Lagarias analyze an infinitesimal ver- 
sion of Karmark.ar’s algorithm, and study trajectories leading 
from each point to the optimum defined by taking infini- 
tesimal steps. It is interesting to note that the points o”, a’, 
. . . +k lie on such a trajectory that would be gen- 

erated by starting the infintesimal version of Karmarkar’s 
algorithm at coo. Thus OUT algorithm could also be viewed as 
efficiently following this trajectory to the optimum. 

3. The Algorithm 

In this section we give the actual algorithm. We assume 
that we are given a p” such that pmax - pa = 20cL), and an 
x0 which is close enough to the center w” of the system of 
linear inequalities 
P(xO) 5 0.04. 

7r” = {AxZb, cTxzpO}. Specifically, 

At the beginning of the krh iteration we have a parame- 
ter p&-r, and a feasible point xkml such that cTxk-’ > pk-‘, 
and fk-l(~~-i) :< 0.04. We also have a diagonal matrix D 

such that - 1 

1.1 (a:xk-‘-b;)2 
S D, I 1.1 

(aTxk-‘-b.j2 ’ 
for 

i=], . . ,m. During the krh iteration we perform the fol- 
lowing computations in sequence. 



1, pk := pk-1 + 1 (CTXk-l -pk-‘), 

ZT 

2. Determine a direction ek by solving 

(A’DA + m 
($*I’-1 4372 cc’) tk = - qk. 

where qk is the gradient of p(x) evaluated at xk-‘. 

3. Compute a scalar f* > 0 such that 

0.018 5 (tk)2 (Ek)T(ArDA + 
ccrxk -:- pk)2 ccr) tk 5 0.0196. 

4. If fk(xk-1 +rk&<fk(xkel) then xk :=~~-l+t~k~ 
else Xk := xk-l, 

5. For each i, lsirrn, 

if ( Dii < 1 

1.1 (U[Xk-bi)’ 
) or (Dii> 1.1 ) 

(U[Xk-bi)2 

then Dii : = 1 

(aTit’- bi)2 

The algorithm halts when crxk- 13k~2-eL for some 
prespecified constant 9 2 13. 

Each iterate xk is a good approximation to the center 
mk, and satisfies the condition fk(nk) ZG 0.04. It is this 
perty of the algorithm which leads IO a bound of O( ?” m L) 
on the number of iterations. Using this property we can 
show the following Theorem. 

Theorem 1. If rn2 16 then for 
22 - pk= 0.4(pmax - pq. 

all k, 

From Theorem 1. it follows that, 

P and since 

max - p” = 20cL’ cr.r’ - pk must fall below 2-8L in 
!(x’%L) iterations. Thus the algorithm halts in O(GL) 
iterations. From Theorem 1, it also follows that when the 
algorithm halts, pmax - crxk 5 1.25 X 2-ei. Using the final 
point generated by the algorithm an exact optimum ( an 
optimal vertex ) may be computed in O(mn2) arithmetic 
operations (41. 

The proof of Theorem 1 is based on the following Lem- 
mas. For the lemmas below we assume that m B 16. 

Lemma 1. For all k, 

CT& - pk 5 0.5 (P”“” - pk, ( 

and if fk(x) zz 0.04 then 

1cL+c5L ( 0.4 

cTmk- pk -3-T 

Lemma 2. For all k, if ~-‘(xk-‘) 5 0.04 then 
fkhk - l ) 5 0.05. 

Lemma 3. 
fk(xk-l 

For all k, if 0.04=fk(zk-ij SO.05 then 
+ rktk) 5 0.04. 

Lemma 1 follows from Lemmas 4 and 5 which are proved in 
section 4. Lemma 2 follows from Lemma 7 that is also 
proved in section 4. A proof of Lemma 3 is given in section 
5. From Lemmas 2 and 3, it inductively follows that for all 
k, fk(xk) ZZG 0.04. Theorem 1 then follows from Lemma 1. 

4. Potential Functions 

We shall study some properties of the potential 

F(x) = 5 ln(aT.z-bi) + m ln(crX - l3) 
i=l 

and the point o that maximizes F(X) over the polytope 
Pa = (x:,~x zz b, crx 2 p}, We note that o is a unique 
point since F(x) is strictly concave. Let f(x) be the normal- 
ized potential given by f (x) = F(w) - F(x). 

Lemma 4. For any point n in the polytope Pa, 

m (UF-bi) 
2 +mC7X = 2m, 
i-l (U~CSI - bi) Pw-p 

and 

2&a-p 2 OS(Sx-B). 

Proof. Since the gradient of F(x) vanishes at o, taking the dot 
product of the gradient at o with x-w gives 

m af(x-o) 
lx 
i-1 a[W-bi 

+ mc%-) = 0 
G-w-p . 

Lemma 4 then follows. B 

The next Lemma states that if x and w are close in 
potential then the value of a:x (as well as C’X) at x and at o 
can differ only by a small amount. 

Lemma 5. If f(x) 5 C - $ , where OaS< 1, then 

Iu:x-ufw) 

~:o - bi 
IS, lsism, 

and 

Proof. Suppose that f(x) 5 $ - -$- , where 0 zz 6 < 1. Let 
* * 

6i(X) = 

afx-afw 
aj76+ ’ 

for i=1,2, ,m, and let 

Ci(X) = 
c’x-c’w 

CT6Pp 

, for i=m+l, ,2m. First, we show 

that 

&xj2 5 82 (5.1). 
i=1 

As S(x) is strictly convex, the minimum value of f(x) over 

the region {x: ~tl~(x)~?S~, Ax 5 b , cTx 2 fi} occurs on the 
i-1 

boundary of the ellipsoid Z(6) = {n: ~~i(X)‘~S2}, We 

shall lower bound the value off (n) on thi’boundar y of 8(b). 
We have that 

f(X) = - 2 h(l+*i(X)) 
i=1 

Using the Taylor series expansion for ln(l+$@)), within the 
ellipsoid Z(g), f (n) may be expressed as 
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From Lemma 4, 2 $i(x) = 0. Also, on the boundary of the 

2m t1 (- l)‘qJ&)’ 
region Z(6), x 2 i >O. Thus on the boundary 

111114 

of Z(6) 1 

(5.1). above then follows. Then 

2m 

and since z Q&)=0 we get that 
i-l 

We note that Lemma 1 in section 3 follows from Lem- 
mas 4 and 5 above. 

Let F’(x) be the potential defined as 

F’(x) = $ln(nrx-bi) + mln(crx - p’), and let o’ be the 
i-l 

point that maximizes F’(x) over the region 
{x:Axz b, cTxxr p’}. Let f’(x) =F’(u)‘) -F’(x) be the 
normalized potential corresponding to F’(x). The next 

lemma bounds the change in objective function value at the 
center due to change in the parameter p. 

Lemma 6. Let p’?p. Then cTti’ ZC’UI and 
CTW’-c*co~ p/--p. 

Proof. Given in [5]. 

The next Lemma bounds the change in potential at a 
point due to change in the parameter p. 

Lemma 7. Let x be a point in the interior of the ,polytofe 

Pp = {x:Axzb, cTxZp} such that f(r)S$-$, 

where OS6< 1. Let p’ = p+ $$cTx-p), where ~120. 

Then 

f’(x) ‘f(X) + a6 
e-*, 

&(14- s I2 + = _. 
(1 - * - *:I 

Proof. We may writef’(x) as 

We have 

= 1 + (p’-fiJ(&-CT,) 
(cTx-p’)(cTo-p) 

5 1+ as- 1 

m VZ’(l- 
. . (by Lemma 5). 

Thus 

,*&x-P)(2wP’)) ~ a6 
(crx-p’)(cTw-p) flu - 3) 

Next, 

cTo’--p’ 

cTW-p 

@‘-pJ2 .(byLemmah) 
(CT”-f3)(cTw-p’) 

~ 202-p + 
CTWp 

Then 

f’(w) 

+ c?(l”t-. &j2(1 - * - $-f 

From Lemma 4, 

Thus 

02(1+ 

.f’(w) s 
T$’ 

I 

(l-e-&) 

We note that Lemma 2 in section 3 follows from Lemma 
I above. 

f’(x) = f(x) + f’(w) + mln((cTx--B)(cTw-pl) 
(cTx--p’)(cT’w-fi) 

32 



5. Local Optimizations 

In this section we describe the local optimizations, and 
show that xk, the point computed during the krh iteration, suf- 
ficienrly reduces the potential p(x). We shall collect together 
a few definitions. Let @(x) be the potential defined as 

Fk(x) = 5 ln(arx-bi) + mln(c’x-pk) 
i=l 

and tik be the point that maximizes Fk(x) over the region 
{x:Ax 2 b , cTx 2 pk}. Let f”(x) = Fk(o) -Fk(x) be the nor- 
malized potential corresponding to Fk(x), Let xk-’ be the 
point at the beginning of the krh iteration. Let nk be the gra- 
dient of p(x) evaluated at xk-‘, and let D be a diagonal, 

matrix such that 
1 5 Dii 5 1.1 

l.t(a~xk-1-b,)2 (a;xk-1-bt)2 ’ 

xk is obtained from xk-l as follows. 

1. Determine a direction tk by solving the system of linear 
equations 

(A’DA+ m 
ccTxk - 1 _ pk)Z 

ccT)tk = -‘Ik 

2. Next, compute a scalar tk > 0 satisfying the condition 

0.018 5 (rk)2 ([k)T(ATDA + m 
cCTXk-’ -pk)2 cc’) Sk = 0.0196, 

3. If &k-l +tk[*))<fk(xkwl) then ~*:=x*-~+t~[* 
elsexk:=xk-I. 

It is adequate to show that if fk(xk-‘) exceeds 0.04 then 
xk-’ f rk 5’ sufficiently reduces the potential p(x). The fol- 
lowing lemma was introduced in section 3. 

Lemma 
fk(x’ - ’ 

0.045fk(xk-1) 50.05 
+ rkEk) Z%75&-l, 50.04. 

then 

In this section we shall prove an alternate Lemma, i.e. 
Lemma 8 below, and Lemma 4 will follow as a consequence 
of Lemma 8. We shall require some additional notation. Let 
Ek(r) be the ellipsoid 

Ek(r) = {x:(x - x~-‘)~G~(x -xk-‘) 5 r2jk(xkXk)} 

where 

Gk = ATDA C m 
cc T 

(,Txk-I-pk)2 

and Y lies between 0 and 1. Let zk(r) be the point that 
minimizes the linear function ($)‘; over the ellipsoid Ek(r). 
Let Hk denote the Hessian of fk(x) evaluated at xk-‘. Note 
that Hk may be written as 

Hk= 2 1 

i=l (six 
T k-l-bi)2 

aja: + 
T 

(c x 
k-:-gkj2 ccT’ 

Lemma 8. Suppose that O<fk(xk-*) 5 $- - $, where 

Od8< 1. Then 

fk(z’(r)) 5 (1 - I*r + 0.55r2 + vr3)f(xk-‘) , 

where 

and 

v=y*. 
Before proving Lemma 8, we shall show how Lemma 4 

follows from Lemma 8. As z’(r) minimizes (qk)rx over the 
ellipsoid Ek(r), from the theory of convex functions [6], it 
follows that zk(r) -xk-’ satisfies the system of linear equa- 
tions 

(ATDA + T k-T_ pkj2 cc x 
ccT) (zk(r) - xkel) = - t(r) yk, 

for some scalar t(r) > 0. So tk, the direction computed dur- 
ing the krh iteration, and zk(r) -xk-l are in the same direc- 
tion. Furthermore, when fk(xk-‘) is in the range 
[0.04, 0.051, xk-’ + tkek equals zk(ro), for some r. in the 
range [0.6, 0.71. So from Lemma 8 we may conclude that 
if 0.041~(xk-‘) ~5 0.05 then 
fyxk-’ + tk(‘) 5 o.75fk(xk-‘) 5 0.04. 

We shall now give a proof of Lemma 8. 

Proof of Lemma 8. Let x=xkV1 + tc. Using a power series 
expansion at xksl, p(xk-’ + t 5) may be written as 

fyxk- ’ + t 5) = fk(xkk’) + t (71k)TE f $t%Q 

+( 

m (cT# 
CTxk-l - pk)j ) 

Since 1 1.1 
1.1 (a;xk-1-bi)2 

SDD,I 
(a:X’-’ -bi)’ ’ 

$tTHke s +t eT(ATDA + m 
(cTxk-’ -pk)2 CCT)S, 

and so within the ellipsoid Ek(r) the magnitude of the second 
order term in the above series is upper bounded by 
0.55 r2fk(xk-‘). Next, we bound the sum of the magnitudes 
of the third and higher order terms in the power series for an 
arbitrary point xk-r + t 5 in the ellipsoid Ek(r). 
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, 5 (-l)‘,j ( 5 tw 

j-3 j jml (a:xk-*-b,)j 
+A=), 

(pXk-,l - pk)’ 

Having upper bounded the sum of the magnitudes of the 
second and the higher order terms in the power series for 
points in I?(r), we shall lower bound the maximum c!nange 
in the linear term that is possible within the ellipsoid I?(r). 
Such a bound is provided by Lemma 9. Let x’ be the point 
where the line joining xk-’ and ok intersects the boundary of 
the ellipsoid Ek(r). By Lemma 9, 

(l-f)T(X -xk-1)s - prj-qxk-1). 

Since (~~)~z~(r) 5 (v~)~x’, Lemma 8 follows from Lemma 9 
and the upper bounds on sum of the higher order terms in 
the above power series. n 

Lemma 9. Let x’ be the point where the line joining 
xk-’ and tik intersects the boundary of the ellipsoid Ek(r). If 

O<~(X~-~) 5 2 - g, where OS 6< 1, then 
2 3 

($y-(X' - xk-1) % - p rfk(xk-1) 

where + = 

Proof. Let xk-l-~’ = Au, where u is the unit vector in the 
direction of xk-’ -x’ , and A = Il~~-~-~‘ll~~ We have 

X2 u ‘(A ‘DA + m 
(cTx’-’ -pk)2 c2)u = r2fqxk-‘), 

Since 1 -=DiiS 1.1 
l.l(nTXk-‘--bi)2 - (a?‘xk-‘-bi~’ I 

A2 uTHku 2 +2p(xk-1). 

Thus 

Hence 

(?-+)~(xk-l-x’) 

Let yi = 
u;Xk-l -ufok 

a?&--b 
, for i = 1, . ,m, and let 

CTXk-l-CfOk ’ 

Yi = 
cTCOk- Pk 

for i=m+l, . . ,2m,. Then 

(?y)r(xk-l-,k) = 2 (‘-1) ) 
j-1 1fYi 

(X k-l-WQ~Hk(Xk-l-Wk) = 2 (‘- - 1)2, 
j-1 J+Yi 

and 

fk(xkml) = $J In(&) 
i=l 

From Lemma 4 in section 4, 

$Jy, = 0. 
I=1 

Since jk(xk-‘) I % - $-, where 0 I S < 1, from Lemma 5 

in section 4 we get that 

IYiI Z5 8, i = 1,2, . . . ,2m. 

We can thus apply Lemma 10 below, and from (9.1). above 
conclude that 

($y(xk-1-x’) L rfk(xk-1) q1-q 
. n 

( 1 

L 

l.l( g s’ 
2 

j-0 (i+1)o’+2) ) 

Lemma 10. Suppose that 2 yi = =O, 2 ln(l+y;) < 0, 
i=l i=i 

and Iyi) 5 S-C 1, for i = 1,2, ,2m. Then 

and 

Proof. Since 9 yi = 0, 
i-1 

SO as [yi 1 5 8, 

Next, as 2 yi = 0, 
i=l 

5 ln( 
i-l 

-&-) = 5 (x - ln(l+yfN 
i=l 

Yf (l+Yi)(Yi-ln(l+Yi)) = 2 - 
g,#O, 1CiCm l+yi Yf 
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Using the Taylor series expansion for In(l+yi), for yi#O we 
get 

(1 +Yi)(yi - 141 +yi)) 

Y: 

Thus 

Lemma 10 then follows, I 

6. Amortizing the number of arithmetic operations 

In this section we show that the total number of arith- 
metic operations performed by the algorithm is 
O( (m n2 + m’.5n)L). The amortization of the number of 
arithmetic operations is similar to the one in [2]. The total 
number of arithmetic operations is determined by the number 
of operations required for the following computations. 

1. Solving systems of linear equations to determine the 
directions 5”. 

2. Computing the gradients $ of the potentials f*(x) and 
computing the scalars rk. 

In the krh iteration we determine a direction Sk by solv- 
ing the system of linear of equations 

(ATDA f 
m 

(,TXk-l-pk)2 
CCT) gk = - TJk 

where $ is the gradient of fk(x) evaluated at J?-‘, and we 
find a scalar tk such that 

Suppose that D’ is the matrix obtained by changing the ith 
diagonal element of D to d’ Then 

A’D’A = ATDA + (d’-D,i)aia~ 

Thus whenever an element of D is changed, ATDA changes by 
a rank one matrix, and hence (ATDA)-’ changes by a rank 
one matrix. Therefore when an element of D is changed, 
(A’DA)-’ may be updated in O(n2) operations, using th 
rank one update formula 

(B + &)-l = B-1 _ m-14 (B-‘vf 

1+ VrB -‘u 

So to obtain a bound of 0 (m n2 L) on the total number of 
operations required to maintain (ATDA)- ’ , it is sufficient to 
show that the total number of changes to the matrix D during 
the entire execution of the algorithm is 0 (m L). 

Let 

Suppose Da was reset at the Irh iteration and at the jrh itera- 
tion but was not reset between the Irh and jrh iterations. 

Then 5 CII~ 2 ln(1. I), and the total number of times Dii is 
k=I+l 

changed during the execution of the algorithm is 0 ( i $$), 
k=l 

where Z is the number of iterations performed by the algo- 
rithm. Thus, the total number of changes to D is 

O( E 5 44,. 
i-l k=i 

m I 
A bound on x x 4: may be obtained as follows. xk 

i=l k=l 
lies within an ellipsoid around x’-’ , and xk - xk-] satisfies 
the condition 

0.018 5 (rk)2 (gk)’ (ATDA + 
m ccT) Sk s 0.0196 (xk - xk-l)’ (A’DA + m 

cCTXk-’ -p&)2 tCfXk - I- ,3k)2 
ccT) (xk - .‘-I) s 0.0196 

The gradient qk can be computed in O(mn) operations, and 
once we have Sk, a required rk may also be obtained in 
O(m 

3 
operations. The total number of iterations is 

0 ( m L). So the total number of operations required to 
compute yk and scalar tk over all the iterations is 
0 (ml.’ nL). We maintain (A’DA)-’ and update it whenever 
the matrix D changes. Once (ATDA)-’ is available, 

(A’DA + 
T cc x k-:-pk)2 Cc ) 

T - ’ may be computed in 0 (n2) 

operations as the two matrices differ by a rank one matrix, 
and then Sk may be obtained in O(n2) extra operations. We 
shall show that the total number of operations required to 
maintain (A*DA)-’ during the entire execution of the algo- 
rithm is O(mn’L), and then the desired bound on the total 
number of arithmetic operations performed by the algorithm 
would follow. 

At the end of the krh iteration D is updated as follows. 
For i=l;.’ 

1 ,m, the ith diagonal element Dii is reset to . 4 

Since at the start of the krh iteration, for i = 1, ,m, 

Dii E l 
1 1.1 

1.1 (a;~‘-~-bJ~ ’ (a;nk-‘-&i)2 
1, it follows that 

m =rxk--&. 
I 

’ ( a&&i 
- 1)’ 5 1.1 x 0.0196, 

i=1 

and thus 

a[xk-bi 

arxk-‘-&i - 1)) 5 l.lxO.Ol96xG 

Then using the taylor series expansion for the natural loga- 

rithm, it is easily shown that 5 I$$ = 0 (G), and since I, 
i-1 

the number of iterations, is O(GL.) we may conclude that 

2 i 4: = O(mL). 
i=l k-l 

1 
if D/i g [ 

1 1.1 

(arXk-bi)2 1 .l (arxk-bi)2 ’ (a[Xk-bi)2 
I. 
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7. Recasting a linear program into the required format 
In this section we show how to transform the given 

linear program so that a suitable starting point for the 
transformed program is available. There are several ways to 
carry out such a transformation. The one we give is similar 
to the one in [5]. The given linear program is 

max p’x 

s.t. Hzzq 

where z C R”’ , p C R”’ , q E R”’ , and H C R”“xy’. We reserve 
A, x, b, and c to refer to a linear program that is already in 
the required format. Let 

L i = logz(largest absolute value of the determinant 

of any square submatrix of H) 

+ logz(m;xpi) + log2Cm;x 41) + 1%2(~ml+n1). 

Note that 

1. If the given linear program has an optimal solution then 
every optimal vertex z’p’ satisfies the condition 
lIzOP’II x S 2L1. 

2. If the polytope {I : Hz 2 q } is unbounded then there is a 
feasible solution zf such that I Izfl Ix S 12L1. 

Let rER, let eCR*’ 
e7=[1,1, “. ) 

b;, a vector g&n by 
11, let A = m1n12 and let p= 2 ‘. Let 

h: denote the irh row of H. The transformed linear program 
is as follows. 

max pTz+p.f 

s.t. lI:z - (A+q,)r 25 -A, i = 1,2, . ’ ,rnl. 

-e’Hz zz -A 

Zj 2 -A, j= 1.2, ’ . . ,?I1 

-32 -A, j=l,2;..,nl. 

-At 2 -A 

((m +l)A+erq)r 2 -A 

Letm=mi+2n1+3,andletn=nl+1. I,etACRmX”denote 
the constraint matrix, b E Rm denote the right hand side of 
the constraints, c CR” denote the objectrve function vector, 
and x E R” the variables in the transformed problem. Note 
that cT = lpr, ~1, and xr = [zr,r]. The tranformed linear pro- 
gram may be written as 

max crx 

s.t. Axzb. 

The transformed problem has the following properties. 
1. Since ((m +l)A+erb) > 0, r is bounded, and thus the 

polytope {x :Ax 2 b} is bounded. 

2. Let 

L = logs(largest absolute value of the determinant 

of any square submatrix of A) 

+ lo&.( ny Ci ) + logz( rnfx bi) + logz(m +n) . 

Then L S 4OLi. The bound on L follows from the 
observations that the largest absolute value of the deter- 
minant ;f sny square submatrix of AZk; at most 
(ml+nl) 2 , and that maxb,Smtnt2 , and that 

3025, 
i 

m;xc,S2 . 

3. 0 is feasible. Since the sum of the rows of A is the zero 
vector and all the coordinates of b have the same value, 

the gradient of the function 2 In(aTx-bi) vanishes at 
i-l 

0. Furthermore, as the polytope (x :Ax z b} is 
bounded, 0 is the unique point that maximizes the func- 

tion 2 ln($x-bbi). 
i=l 

Z 4. A point 1 is feasible for the transformed linear pro- [I 
gram iff Hzkq, eTHz’: A, and -ASZjSA, 
j= 1,2. . ,nl. 

5. p. is large enough so that if there exists a feasible point 
with t = 1 then every optimal solution has r = 1. This is 
because the minimum vertex to vertex variation of the 
function u.t exceeds the maximum change in the function 
p’z over the entire polytope {x : AX 2 b }. 

We shall now show that 0 is an adequate starting point 
for running the algorithm in section 3 on the transformed 
problem. Let po = -m3p, Let 

F’(X) = g ln(ar>;-bi) + mln(crx-PO), and o” be the point 
i-1 

that maximizes ,$“p), oSince the magnitude of p” is large 

enough Imln( - c-$-$)l=; for any point x in the 

transformed polytope. Thus, F”(wo) - FO(O) s 0.04 as 
required, for m 12 4. 

Finally, we have the following easily shown lemma. 
ZOPf 

Lemma 11. Let I 1 hop’ be an optimal vertex in the transformed 

linear program. 

1. If tOP’ < 1 t.hen the original linear program is infeasible. 

2. If pPr = 1 eTHzoP < A 

j=1,2, . . oPt ‘s’ an $::a1 ,nl+l, then z I v /ttjr/n<tkL 

original linear program. 

3. If f *pr = 1, and either 1~1”’ 1 = A, for some j, or 
eTHzoP’ = Ii, then either the original problem is 
unbounded or .z is an optimal solution. In this case the 
transformed problem is solved ag 

2A to obtain a new optimal point 

then the original problem is unbounded, otherwise I“~ 
is an optimal solution. n 
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8. Precision of arithmetic operations 
The error in the solution of a system of linear equations 

is directly related to the conditon number of the matrix 
describing the system, and the precision used for arithmetic 
operations [7, 81.’ In the first part of this section we show 
that the entries in the matrix D at each iteration are upper 
and lower bounded by 218L and 2-4L respectively, and that 
the condition numbers of the matrices arising during local 
optimizations are upper bounded by 230L. Using these 
bounds on condition numbers we shall argue that it is ade- 
quate to maintain (A*DA)-’ to an accuracy of uL. bits for 
some constant Y. Then in the second art of the section we 
describe how sufficient accuracy in (A P DA)-’ may be main- 
tained during rank one changes using 0 (L) bits of precision. 

8.1. Condition number of local optimization matrices. 
As before let ,vk-r be the point at the beginning of the 

krh iteration. During the krh iteration we determine a direc- 
tion Sk by solving the system of linear equations 

(A’DA + 
m 

(,T,k-l-pkj2 
CCT)Sk = -qk 

where D is a diagonal matrix such that 

and 

rn.1. . 

ai + 
m 

CTXk-’ -b; 
c is the gradient of 

. . 
&x) evaluated at xk-‘. We maintain’(A7DA)-’ by perform- 
ing rank one changes, and compute 

(A’DA + 
m 

(cT-rk - 1 _ Bk)’ 
ccT)-’ by a rank one change to 

(ATDA)-‘:- ‘- ’ 

We shall first bound the entries in D. Note that the 
absolute value of arx-bi and c’x for all feasible x is upper 
bounded by 24L. 
cTxk-'- k-1>2-13L 

Moreover, we may assume that 
P (since the algorithm halts when 

cTxk-pk is less than 2 -13L). h‘ext, we shall lower bound the 
value of afxk-‘-bi, for 1 si I m. Let pkel be obtained by 
rounding pk-’ to 1.515 bits. A vertex of the polytope 
{x:Axrb, cTxrp k-l} has rational coordinates with a com- 
mon denominator which is most 21a, and so the maximum 
change in the value of afx-bi over this polytope is at least 
2-‘6L. Thus, the maximum value of arx-bi over the 
polytope {Axr b , cTx 2 fik-‘} is at least 2-‘6L. Then from 
Lemma 4 in section 3, 

2-16L 
afok-‘-bi~ - 

2m ’ 

where cck-l is the point that maximizes Fk-‘(x). Further- 
more, as Fk-l(~k-l)-Fk-l(~k-l) 50.04, from Lemma 5 in 
section 3 we get that 

2-m 
a?xk-'lb.> - 

‘- 4m ’ 

for m L 16. Thus we may conclude that the entries in D are 
upper and lower bounded by 218L and 2-4L respectively. 

We shall now obtain bounds on condition numbers. 
Note that the condition number of a symmetric positive defin- 
ite matrix is just the ratio of the largest to the the smallest 
eigenvalu e , and that D, ATDA, and 

ATDA + 
m 

(CTxk-l e&2 Cc 
r, are symmetric positive definite 

matrices. ‘An elem’eniary arguement using ra 
Y 

leigh quotients 
[7, 81 shows that the condition number of A DA is bounded 
by the product of the condition numbers of ATA and D. 
Furthermore, a straightforward calculation shows that the 
condition number of ATA is at most 27L. So from the above 
bounds for entries in D we ma 

l 
conclude that the condition 

number of A’DA is at most 229 . A similar calculation ives 
a lower bound of 2-U on the smallest eigenvalue of A f DA, 
and an upper bound of 221L on the tar est eigenvalue of 
A’DA. This in turn leads to a bound of 23 & on the condition 

of A’DA -t m 
(cTxk-’ -pk)2 

Cl?. 

Let u be fixed constant greater than 100. We maintain 
an approximate inverse (A’DA),’ such that 

(ATDA)-’ = (ATDA),’ + A 

where IlAlls = 2-vL. Then, from the above bounds on condi- 
tion numbers, 

(ATDA),’ - 
m(ATDA),lccT(ATDA)~l 

l+mc’(A*DA),‘c 

= (ATD~ + 
T 

T -1 + A’ 
cc x k-:-p’)2 Cc ) 

where IlA’t12~2-(V-40)L. Once the approximate inverse 

(ATDA);’ is available,kx ‘-I +rkek is obtained as follows. 
The gradient q , the to 

(A’D-4 +-(cTxk-;eBk,2 CC’)-’ 
approximation 

given by the above formula, 

the direction ek, and tne scalar rk are all computed using 2vL 
bits of 

s 
recision, and at the end each coordinate of the point 

xk-’ +f tk is rounded off to 4OL bits. 

Finally, as Ilqkllz 5 222L, and tk I 22L, it is easily shown 
that the error in xk-l+rktk is O(2-40L). Then the potential 
difference between the computed and the exact value of 
xk-l+rkgk is neglible. 

8.2. Maintaining accuracy in the inverse 
Here we shall briefly describe how to maintain accuracy 

in (ATDA)-’ during rank one changes. Let B denote 
(A TDA)-1. Suppose we have an approximate inverse B’ of B 
such that BB’=I+E,, and IIElllS2-y’L. Then 
B’ =B-‘+B-‘Et, and IIB-‘E,ll~~2-‘Y’-29’L as the condi- 
tion number of B is at most 229L. A good approximation to 
(B + uv’)-’ is computed as follows. 

1. Compute 
B” = B’ _ ‘;$$y 

initial approximation 

2. (B + uv’)(B”) = I+E, + Ez, where E2 is a constant 
rank matrix computable in O(n2) operations, An ade- 
quate approximate inverse of I3 is obtained by rounding 
the entries in I3 ” - B”E2 to multipies of 2-Y’L. 
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Let B”- B”EzfE3 be the computed approximate inverse. 
Then 

(B + UVr)(B” -B”E2+E3) 

=I+E,- (E, +E,)E, + (B + uvT)E3. 

We note that the condition number of ATDA is bounded by 
22gL. It is then easily shown that IIE~ll~:~2~IIE1 112. So 
we may choose y1 and y2 large enough so that IlEg II;!, and 
I I (B + uv’)E~ I Ia are each less than 2-‘II El Ilz. Then 

IIEz(EI+E2) f (B+uvT~E3112~ (1 + O(2-L))2-y’L 

and the error in B-’ grows very slowly. 

9. Conclusion 

We have presented an algorithm for linear programming 

which requires 0 ( ( (m +n) n2 f (m +n)‘,’ n) L) arithmetic 
operations where m is the number of constraints, and n is the 
number of variables. Each operation is performed to a preCi- 

sion of 0 (L) bits. L is bounded by the number of bits in the 
input. 
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