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We present an algorithm for linear programming which requires O(((m + n)n2+ (m + n)LSn)L) 
arithmetic operations where m is the number of constraints, and n is the number of variables. 
Each operation is performed to a precision of O(L) bits. L is bounded by the number of bits in 
the input. The worst-case running time of the algorithm is better than that of Karmarkar's algorithm 
by a factor of x/m-+n. 
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1. Introduction 

We study the linear programming problem 

max cTx 

s.t. Ax >~ b 

where A e R m×~, b ~ Nm and c E Nn. We assume that the polytope defined by Ax >i b 
is bounded and has a non-zero interior. As the polytope is bounded we can assume 
that m >~ n, and that the columns of A are linearly independent. 

A polynomial time algorithm for the linear programming problem was first 
presented by Khachian [6] using the ellipsoid method. Khachian's algorithm requires 
O(mnaL) arithmetic operations in the worst case, and each operation is performed 
to a precision of O(L) bits where 

L = log2(largest absolute value of the determinant of any square submatrix of  A) 

+lo  (max 4 + lo  (max + 
In [5], Karmarkar presents an interior point algorithm which requires O((m LSn2+ 
m2n)L) arithmetic operations, each operation being performed to a precision of 
O(L) bits. We present an algorithm for the linear programming problem which 
requires O((mn 2 + mLSn)L) arithmetic operations in the worst case, and it is adequate 
to perform each arithmetic operation to a precision of O(L) bits. The algorithm 
presented in this paper is thus faster than Karmarkar's algorithm [5] by a factor of 
, ~  for all values of m and n. It is also faster than Khachian's ellipsoid algorithm 
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by a factor of  n for m ~< n 2, and continues to be faster than his algorithm for m ~< n 4. 

(Typically, m and n are of  the same order.) 
In [8], Renegar gives an algorithm for linear programming which requires 

O(mlSn2L) arithmetic operations. We build on the ideas in [8], and obtain a faster 
algorithm. In our algorithm we construct a sequence pO, p l , . . . ,  pk, . . . ,  of smaller 

and smaller polytopes which shrink towards the optimal vertex (facet). During the 
kth iteration, we move from the center of  polytope pk-~ to the center of  polytope 
pk by performing a local optimization which consists of  minimizing a linear function 
over an ellipsoid. The total number  of  iterations performed by the algorithm is 
O(x/-m L), and on the average each iteration requires O(~-m n2+mn) arithmetic 

operations where the average is taken over all the iterations. Thus the total number 
of  arithmetic operations is O((mn2+ rn~Sn)L). When the algorithm terminates we 
have a feasible point that is sufficiently close in objective function value to the 
opt imum over the original polytope, and we may then construct an optimal vertex 
as described in Section 9 in O(rnn 2) arithmetic operations. 

In Section 2 we give an overview, and describe the relationship with related work 

[1, 8]. In Section 3 we give the algorithm. In Section 4 we give some properties of  
the potentials used to measure convergence, and in Section 5 we describe the local 
optimizations. In Section 6 we show how to amortize the number  of arithmetic 

operations. In Section 7 we show how to reduce any linear program to the format 
required by the algorithm, and in Section 8 we show that O(L) precision is adequate 
for arithmetic operations. In Section 9 we describe how an optimal vertex may be 

obtained from a feasible point which is sufficiently close in objective function value 

to the optimum. 
At this point we note that a condensed version [11] of  this paper  appeared in the 

Proceedings of  the 19th Annual ACM Symposium on Theory of Computing, May 
1987. We would also like to point out that a bound of O((m + n)3L) arithmetic 

operations for linear programming has been independently obtained by Gonzaga [4]. 

2. An overview 

Let P be the given polytope 

P = {x: Ax >~ b} 

and let fl . . . .  be the maximum value of the objective function cTx over P. Let 
fl o, i l l , . .  -, fl k , . . . ,  be a strictly increasing sequence such that lira k-,~ fl k = fl max. Let 

k ~" denote the set of  linear inequalities {Ax>~ b, CvX>lflk}, and pk denote the 
polytope pk ={X: AX>~ b, CTX>-~k}. Let a T denote the ith row of the constraint 

matrix A. The center of  the system of linear inequalities ~.k is defined to be the 
unique point that maximizes the potential function 

Fk(x) = ~ ln(a~x-bi)+m ln(cVx-/3  ~) 
i~l 
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over the interior of  the po ly tope  pk. Since the columns of  A are linearly independent ,  

F k ( x )  is a strictly concave funct ion over the interior o f  pk, and so the center o f  3T k 

is indeed a unique point. We let to g denote  the center of  the system 1r k. Let f k (x )  
be the normal ized potential  funct ion given by f k ( x )=  Fk(to k) --Fk(x). f k ( x )  is a 

strictly convex function. Furthermore,  the value o f  Fk(X)  at o k is not  required for 

evaluating the derivatives o f f k ( x ) ,  and for  comput ing  f g ( y ) - - f k ( z )  for a pair  o f  

points y and z. 
The algori thm generates a sequence o f  points x °, x ~, . . . ,  x k, . . . ,  such that x k is 

in the interior o f  polytope pk, a n d  x k is a good  approximat ion  to the center [O k of  

the system 1r k. Specifically, each x k satisfies the condi t ion fk(xk)<~0.04. We shall 

assume that  /30 satisfies the condit ion /3max--/30=2 °~L~, and that  we have a point  

x ° such that  f ° ( x ° )  <~ 0.04. In  Section 7 we show how to t ransform the given linear 
p rogram so that  a required starting point  x ° is available. In the kth i teration,/3 k is 

computed  as 

~k=/3k-I+(,~/,/N)(CTXk ~ - ~  ') 

for  some constant  a. As the bounding  objective funct ion hyperplane  shifts due to 

the change in/3,  x k-1 may  no longer be a good  approximat ion  to the new center 

co k, and so a local opt imizat ion is per formed to decrease the potential  f k ( x )  and 

obtain a better  approximat ion  x k to the center w k. The local opt imizat ion consists 

o f  minimizing a linear funct ion over an ellipsoid. The sequence rio,/31, . . . , / 3 k , . . . ,  

satisfies the condit ion 

/3max ~k~(l__o,/~v/--~)(/3rnax /3k 1) 

for some constant  ~ '  dependent  on a. So the corresponding sequence o f  systems 
0 1 k ~-,  ~- . . . .  , ~ - , . . . ,  induces a sequence o f  smaller and smaller polytopes  

pO, p1 . . . .  , p k , . . . ,  which shrink geometr ical ly towards  the opt imal  vertex (facet). 

In  O(x/m L) iterations we obtain a point  where the objective funct ion value is 2 -°(L~ 

away from the optimal value over the original poly tope  P, and we may  then isolate 

a set of  constraints which define an opt imal  vertex o f  P as described in Section 9. 
We shall now describe how to find x k f rom x k-1. It may  be shown that  if 

f k  l(xk-1 ) < 0.04 and a <~ 1 t h e n f k ( x k - 1 )  <~ 0.05. Thus at the start o f  the kth iteration 

we have a point  x k-1 satisfying the condi t ion fk(xk- l )  ~ 0.05,  and we have to obtain 

a point  x k such that fk(xk)~<0.04.  Let D be an m x m diagonal  matrix such that  

the ith d iagonal  entry Dii satisfies the condi t ion 1/(1.1(aV~xk-~-bi)2)<~D,<~ 
1.1/ (a~x k - l -  bi) 2. Let Ek( r )  be the ellipsoid defined by 

E k ( r ) = { x :  ( x _ x k - 1 ) T ( A T D A + ( c T x k _ ? / 3 k ) 2 c c T ) ( x _ x k  1)<~r2fk(xk 1)} 

where r is a suitable parameter  between 0 and 1. We note that  Ek(r) is conta ined 

in the po ly tope  pk. Let ~7 k be the gradient  o f f k (x )  evaluated at x k-l. Cons ider  the 

power  series expansion o f f k ( x )  at x k-1. Within the ellipsoid Ek(r), the magni tude  
o f  the second order  term in this series is b o u n d e d  by 0.55r2fk(xk-l), and the sum 
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of magnitudes of  the higher order terms is at most 0.1 r3fk(xk-1)/(1 -- 0.27r), whereas 

the minimum value attained by the first order (linear) term within the ellipsoid is 
less than --0,9rfk(xk-1). So minimizing (~Tk)T(x- X k 1), the linear term in the power 

series, over the ellipsoid Ek(r) will decrease f k (x )  by approximately a factor of 
(1 - 0.9r + 0.55 r2). Let Z k ( r )  be the point that minimizes the linear function (~ k)Tx 
over the ellipsoid Ek(r). I f  0 .5~ < r~<0.8 then zk(r) reduces the potential f k ( x )  by 
at least 25% and f k ( z k ( r ) )  <~ 0.75fk(xk-1). 

X k is computed as follows. From the theory of convex functions [13], 2k(r) --X k-1 
satisfies the system of linear equations 

ATDa-~ (cTxk-i _~k)2 ccT (zk(r) -xk-1) = - t ( r ) ~  k 

for some scalar t(r) > 0. We first compute ~:k, a vector in the direction of zk(r) -- X k-~, 
by solving the system of  linear equations 

ATDA-~ (cTxk--I__flk)2 ccT ~ = --rl • 

It is worth noting that the vector ~:k could be in a direction that is different from 
the direction in Newton's  method [8]. Next, we find a scalar tk> 0 such that 

/ \ m 
0.018 ~ (t k)2(~:k) ~r~ A r DA + (c T x k - ~  fig)2 CC T) ,~k <~ 0.0196. 

I f  0.04<~fk(xk-1)<~0.05 then xk-~+ tk~ k minimizes the function (rlk)Tx over the 

ellipsoid Ek(ro), for some r0 in the range [0.6,0.7], and f k ( x k  ~+tk~k)<~ 
0.75fk(xk 1) ~ 0.04. Thus either f k ( x  k-l) <~ 0.04 or f k ( x  k-~ + tk~ k) <~ 0.04. It suffices 

to let x k be that point where the potential f k ( x )  is lower among the two points x k-~ 
and X k- I  -~ t k (  k. 

An algorithm based on the idea of producing a sequence of shrinking polytopes 
together with a sequence of approximate centers was given by Renegar [8]. An 
approach based on centers is also suggested in [1, 9] but without any analysis. In 
developing our algorithm we follow Renegar 's  approach,  but there are two critical 
differences which enable us to obtain a faster algorithm. First, closeness to the center 
of  a polytope is measured in a different manner. Renegar [8] measures closeness 
to the center in terms of euclidean distance in a transformed domain, and shows 

that a local optimization decreases the distance to the current center. We measure 
closeness in terms of the potentials fk(x) .  Second, the local optimizations described 
in this paper  are quite different from Renegar 's  [8], and can actually increase the 
distance metric used by him in [8] to measure closeness to the center. Finally, 
Renegar 's algorithm requires O(mLSn2L) arithmetic operations. Measuring local 

convergence in terms of the potentials f k (x )  allows us to amortize the number  of 
arithmetic operations, and obtain a bound of  O((mn2+ m lSn)L) on the total number  

of  arithmetic operations performed by our algorithm. 
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In [1] Bayer and Lagarias analyze an infinitesimal version o f  Karmarkar ' s  

algorithm, and study trajectories leading f rom each point  to the op t imum defined 

by taking infinitesimal steps. It is interesting to note that the points to o , 
1 k to , . . . ,  to , . . . ,  lie on such a trajectory that  would  be generated by starting the 

infinitesimal version o f  Karmarkar ' s  a lgori thm at to °. Thus our  algori thm could also 

be viewed as efficiently fol lowing this trajectory to the opt imum.  

3. The algorithm 

In this section we give the actual algorithm. We assume that we are given a flo such 
that/3 m~x - /30  = 2 °(L), and an x ° which is close enough  to the center too o f  the system 

of  linear inequalities ~r ° = {Ax  >~ b, eVx >i/30}. Specifically, f ° ( x ° )  <~ 0.04. In  Section 

7 we shall describe how to suitably t ransform the given linear p rogram so that  a 
required/30 and x ° are available. 

At the beginning o f  the kth iteration we have a parameter /3k-1 ,  and a feasible 

point  x k-I such that  cTx k-~ >/3k-~ and f k -~(xk -~)  <~ 0.04. We also have a diagonal  

matrix D such that 1/(1 .1(aTx k ~ - bi) 2) <~ D ,  <~ 1.1/ (aTx k-~ - b~) 2 for i = 1 , . . . ,  m. 

Dur ing the kth iteration we perform the fol lowing computa t ions  in sequence. 

(1) /3~:=/3k-l+(1/3Ox/--m)(crxk-l--/3k-~).  

(2) Determine a direct ion ~k by solving 

( A T DA-~ ( c T xk-~1m- /3k)2 ccT) 'k  = --'rl 

where k is the gradient  o f f k ( x )  evaluated at x k-1. 
(3) Compu te  a scalar tk~ 0 such that  

m 
O.O18<~(tk)2(~k)T(ATDA4 (CTxg_,_flk)2ccT)~k<~O.O196. 

(4) I f f k ( x  k 1+ tg~k) < f k ( x k - ~  ) then x g := x k-1 + tk~ g else x k := x k-~. 

(5) For  each i, 1 <~i<~ m, if 

D . < l / ( 1 . 1 ( a T x k - b ~ )  2) or D , > l . 1 / ( a T x k - b , )  2 

then 

/9//:= 1/ (a~x  k - bi) 2. 

The algori thm halts when cTx k -- fik <~ 2-13c. Each  iterate x k is a good  approxima-  

t ion to the center w k, and satisfies the condi t ion f k ( x k ) ~  0.04. It is this proper ty  o f  

the algori thm which leads to a b o u n d  of  O(,]-m L) on the number  of  iterations. 

Using this proper ty  we can show the fol lowing theorem. 
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Theorem 1. I f  m >~ 16 then for all k, cTxk--~k~O.4([3m"x--~k). [] 

From Theorem 1, it follows that 

. . . .  - - / 3  k ~< (1 - 0.4/(30x/-~)) (/3 .... _/3 k-l), 

and since /3m~x--/30 = 2  °<L), eTX k _ ~ k  must fall below 2 -13L in O(~-m L) iterations. 

Thus the algorithm halts in O(~/-m L) iterations. From Theorem 1, it also follows 
that when the algorithm halts, [3~"X--CWXk<~ 1.25X2 -~3L. Then, as described in 

Section 9, using the final point generated by the algorithm an optimal vertex may 
be computed in O(mn 2) arithmetic operations, each operation being performed to 

a precision of O(L) bits. 
The proof  of  Theorem 1 is based on the following lemmas. For the lemmas below 

we assume that m t> 16. 

Lemma 1. For all k, 

cTo,)k -- [3k ~ o.5(f3max-- [Jk), 

and if f k ( x )  <~ 0.04 then 

IcTw k -- cTxl/(cTto k --B k) <- 0.4/2x/~-m. [] 

Lemma 2. For all k, i f fk-l(Xk-l)~<0.04 then f k ( x  k-t)<~O.05. [] 

Lemma 3. For all k, if  0.04 <~fk(xk-1) <~ 0.05 then fk (xk-1  + tk(k) <~ 0.04. 

Lemma 1 follows from Lemmas 4 and 5 which are proved in Section 4. Lemma 
2 follows from Lemma 7 that is also proved in Section 4. A proof  of  Lemma 3 is 
given in Section 5. From Lemmas 2 and 3, it inductively follows that for all k, 
f k ( x k )  <~ 0.04. Theorem 1 then follows from Lemma 1. 

4. Potential functions 

We shall study some properties of  the potential 

F(x)= ~ l n ( a f x - b i ) + m  ln(cTx--f l)  
i=1 

and the point w that maximizes F(x )  over the polytope P~ = {x: Ax  >i b, cVx >i •}. 
We note that w is a unique point since F(x )  is strictly concave. (F(x )  is strictly 

concave since the polytope is bounded and has a non-empty interior.) Let f ( x )  be 
the normalized potential given by f ( x )  = F (w)  - F(x) .  
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Lemma 4. For  any  point  x in the polytope pt3, 

" ( a ? f x - b i )  c T x - - J ~  

Z (aXiw _ bi ) q- m - -  = 2 m  i = 1 cT(.o -- [3 

and  

181 

cTo) - - ~  ~ 0 . 5 ( c T x  - - ~ ) .  

A proo f  is given in [8] but  we sketch one for completeness.  Since the gradient  

The next lemma states that if x and o) are close in potential  then the value o f  
aTx  (as well as CTX) at x and at ~0 can differ only by a small amount .  

!.R2 !R3 Lemma 5. I f  f ( x )  <~ 2,, 3,, , where 0 ~ 6 < 1, then 

l a T x - a T o ~ l / ( a T ~ o - b , ) < - 6  , l<~i<~rn, 

and  

I c %  - ~ T x l / ( ~ , o  - ¢ )  <- 6 /  2,/Y~. 

~ !-R2- l--R3 where 0 4  3 < 1. Let tOi(x) = Proof.  Suppose  that f ( x )  ~ 2v 3 U , 

( aTx  -- aToo) / (aTw -- bi) for  i --- 1, 2 , . . . ,  m, and let qJi(x) = (cXx - c V w ) / ( c X w  - [3) for 

i =  m + 1 , . . . ,  2m. We note  that the coordinates  0i(x) were in t roduced in [8, 9]. 

First, we shall show that  

2m 
E ~b,(x) 2<~ 32. (4.1) 
i~l 

From (4.1) the first inequali ty o f  the l emma is immediate.  As f ( x )  is strictly convex,  
2 m the min imum value of  f ( x )  over the region {x: Y~i=l qJi(x) 2 ~> 82, A x  >i b, cTx >~ fl} 

Occurs on the boundary  o f  the ellipsoid Z (3) = {x: ~2m ~1 0~(X) 2<~ 62} . We shall lower 

bound  the value o f f ( x )  on the bounda ry  o f  X(6) .  We have that 

2 m 
f ( x )  = - 2 l n ( 1  + 0 ~ ( x ) ) .  

i=1 

Using the Taylor  series expansion for ln(1 + ~0~(x)), within the ellipsoid ~ ( 6 ) ,  f ( x )  

may be expressed as 

~ ~ ( - 1 ) % ( x y  
f ( x )  = E E 

The lemma then follows. [] 

Proof. 

of  F ( x )  vanishes at w, taking the dot p roduc t  o f  the gradient  o f  F ( x )  at ~ with 
x - w gives 

a~(x-o~) cT(x--0~) 
a ~ w - b j  ~-m = 0 .  i~l  C ToO --[3 
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2 m  

From Lemma 4, ~i=l ~ i (x )=  0. Also, on the boundary of  the region Z(6) ,  

z,, ~ (_l)S~Oi(x)J> 
E E  0. 

i=1  j ~ 4  j 

Thus on the boundary of  Z(6) ,  

2m 

f ( x )  > Y, ½~bi(x) 2 - - l f f / i ( X ) 3  
i - - 1  

2 m 

~/,i(x) (5-X6) (since ]tPi(x)[<~6) ~ ~ 2 1  1 

i 1 

> 

(4.1) above then follows. Then 

2m 

i = l  

and since Y,~1 4J~(x)= 0 and ~m+l(x) . . . . .  4J2,,(x), we get that 

2 ItPi(x)]=m <~6 l-~zm. [] 
i = m + l  c T o 0  - -  

We note that Lemma 1 in Section 3 follows from Lemmas 4 and 5 above. 
Let F ' ( x )  be the potential defined as 

F ' ( x )  = ~ ln(aTx - bi) + m ln(cXx - /3 ' ) ,  
i ~ l  

and let w' be the point that maximizes F' ( x )  over the region {x: A x  >I b, c'rx >1 fl'}. 
Let f ' ( x )  = F ( w ' )  - F ' ( x )  be the normalized potential corresponding to F' (x ) .  The 
next lemma bounds the change in objective function value at the center due to 
change in the parameter/3. 

Lemma 6. Let fl' >t ft. Then cTw ' >t cTto and c Tto ' -  c Too <~ fl' - ft. 

Proof. A proof  is given in [8] but we shall give it here for completeness. Let 
x ( t )  = 3 + t ( 3 ' - f l ) ,  and let w( t )  be the point that maximizes the function 

Ft(x)  = ~ l n ( a ~ x - b i ) + m  l n ( c V x - x ( t ) ) .  
i=1  

Since 

cTw'--cTto = f d  cT(~ t  og(t)) dI 

it suffices to show that 
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As the gradient of  F~(x) vanishes at ~o(t), 

i=1 aTioo(t)- bi ai-~ cTo)(t ) _ x ( t  ) C = O. 

Differentiating the above expression w.r.t, t, and rearranging gives 

The dot product of the left hand side of  this equation with (d/dt)o~(t) is negative 

since the matrix on the left side is negative-definite, and so from the right hand side 
of  this equation we get 

(c (d 2 
,d ,  

Since (d /d t ) x ( t )  = / 3 ' -  13 ~> 0, we may conclude that 0<~ cT((d/dt)oJ(t)) <~/3'-/3, and 

the lemma then follows. [] 

The next lemma bounds the change in potential at a point due to change in the 
parameter/3.  

Lemma 7. Let x be a point in the interior of the polytope PC = {x: Ax >~ b, cTx >~/3} 
such that f ( x )  i 2 1 3 < ~  - ~  , where 0<~ ~<1.  Let 

/3'= /3 + ( ~ / 4 N ) (  d x -  /3), 

where ce >t O. Then 

,~a o,:(1 + a / 2 4 ~ )  2 
f ' ( x )  ~ f ( x )  

+,,/2(1 - c~/,f-m) -~ (1 - a / , f ' m -  ~ / ( , f 2  m))" 

Proof. We may write f ' ( x )  as 

( ( c ~  = / 3 ) ( d ~ - / 3 ' ) ~  
f ' ( x )  = f ( x ) +  f'(~o)+ m ln\(CTx_/3,)(cT~ ° 

We have 

Thus 

( c T x - -  /3 )(  c T o) -- /3') 
= 1 4  

( cT x -/3')(c%~ -/3 ) 
(/3'-/3)(c*., - cTx) 
( c *  x - 13 ' ) (  c " 0,  - [3 ) 

a8 1 
<~ 1-~ m ,f2(1 - oz "r--'/vm) (by Lemma 5). 

m / 
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Next, 

do , '  - /3 '  _ do , '  - /3  ( 1 + (/3' - ~ ) ( d °' ' - c ~e) ) 
cT,o-/3 '  c*e)- /3  \ ( d e ) ' - / 3 ) ( c T e ) - / 3 ' ) ]  

de)'-/3 (/3'-/3)2 -b 
cTe)-/3 ( c ~ e ) - / 3 ) ( d e ) - / 3  ') 

(by Lemma 6) 

cWe) ' - / 3  ce2(1 + 612x/-2m) 2 
CTe)--/3 rn(a--a/x/--m--a6/(x/-2 rn)) 

(by Lemma 5 and definition of/3').  

Then 

( b,', { 
i = 1  In ~---~)+mln\cwe)_/3,] 

, = l t a T e ) - b ,  1 + m t c T e ) - / 3 '  1 

<~ ~ aTe)'--bi cTw'--/3 

i=1 a Te) - bi + m c Te) - /3  
2m 

+ a2(1 + 6/2x/2-m)2(1 - c~/x/-m- a6/(x/2 m)) 1. 

From Lemma 4, 

aTw' - bi c Tw ' --/3 
aTe)_b  i b m i=1 CTO.) - - /~  

2 m = 0 .  

Thus 

,~(1  + , ~ / ~ ) ~  

f ' ( w )  ~< (1 - a/.~-m- a6/(.~/-2 m))" 

We note that Lemma 2 in Section 3 follows from Lemma 7 above. 

5. Local optimizations 

In this section we describe the local optimizations, and show that x k, the point 
computed during the kth iteration, sufficiently reduces the potential f k ( x ) .  We shall 
first collect together a few definitions. Let Fk(x )  be the potential defined as 

Fk(x )  : ~ l n ( a [ x - b i ) + m  ln (cTx- /3  k) 
i=1 

and w k be the point that maximizes Fk(x) o v e r  the region {x: Ax>~ b, cTx~/3k}. 
Let  fk(x)= Fk(e) k) --Fk(x) be the normalized potential corresponding to Fk(x) .  
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Let x k-I be the point at the beginning of the kth iteration. Let k be the gradient 
o f f k ( x )  evaluated at x k-l ,  and let D be a diagonal matrix such that 1/(1.1(aV~x k 1 _ 
bi) 2) ~< D ,  <~ 1.1/(aTx k 1_  bi)2. x k is obtained from x k-1 as follows. 

(1) Determine a direction ~:k by solving the system of linear equations 

A T D A +  (cTxk_I_ f i k )  2 CC T ~k =--rl  • 

(2) Next, compute a scalar t k> 0 satisfying the condition 

( m ) 
0.018~< ( tk)2( ~k) ~ A T D A  4 ( c T xk - l  _ flk)2 ccT ,~k ~<0.0196. 

(3) I f  f k ( x  k-1 + tk~k)) < f k ( x k - 1 )  then x k := x k-~ + tk~ k else x k := x k-1. 

It is adequate to show that i f f k ( x  k-l)  exceeds 0.04 then x k 1+ tk~k sufficiently 

reduces the potential f k ( x ) .  

In this section we shall prove an alternate lemma for Lemma 3 which was 
introduced in Section 3, i.e. Lemma 8 below, and Lemma 3 will follow as a 
consequence of Lemma 8. We shall require some additional notation. Let Ek(r )  be 
the ellipsoid 

m 

where r lies between 0 and 1. Let z k ( r )  be the point that minimizes the linear 
function 07k)Tx over the ellipsoid Ek(r) .  Let H g denote the Hessian of f k ( x )  
evaluated at x k 1. Note that H k may be written as 

m 1 

H k =  i=, y" (aV~x k 1 - -  b,)2 

and r/k may be written as 

m 

aiaTi +(cTx  k i flk)2CcT, 

k ( ~ aT xkl_~ 
"q - = - -  i = l  " - b i  

m ) 
ai 4 cTxk_I ~k  C . 

Lemma 8. Suppose that o <  f k ( x k - 1 )  j1~'2 1~,3 ~ o  - ~ o  , where 0<~ 6 < 1. Then 

f k ( z k ( r ) )  <~ (1 - - /~r+0.55r2+ vr3) fk(x  k 1), 

where 

/x = .= 1 ) ( j+2 )  

and 

= ~(1.1)3/2,/ f k ( x k - ' ) /  (1 --,h.lr2/k(X~-')). 



186 P.M. Vaidya / An algorithm for linear programming 

Before proving Lemma 8, we shall show how Lemma 3 follows from Lemma 8. 
As zk(r) minimizes (~Tk)Vx over the ellipsoid Ek(r) ,  from the theory of convex 
optimization [13], it follows that zk(r) --X k-1 satisfies the system of linear equations 
(given by the Karush-Kuhn-Tucker  conditions), 

(ATDA-I-(cTxk_L flk)2 ccT)(z k(r)--Xk-1)=--t(r)~Ik, 

for some scalar t(r) > 0. So ~:k, the direction computed during the kth iteration, and 
zk(r)- X k-1 are in the same direction. Furthermore, when fk(xk-1) is in the range 
[0.04, 0.05], X k lnt-tk~ k equals zk(ro), for some r0 in the range [0.6,0.7]. So from 
Lemma 8 we may conclude that if O.04<~fk(xk-1)~O.05 then fk(xk--ld-tl~k)<~ 
0.75fk(x k-l) ~< 0.04. 

We shall now give a proof  of Lemma 8. 

Proof of Lemma 8. Let x be a point in the ellipsoid Ek(r).  Write x as x = x k-a + t~ 
where t is a scalar. Using the power series expansion at x k 1, f k ( x k - l  + t~) may be 

written as 

f k ( x k - l +  t() = fk (xk -1 )  + t(nk)V~+ l t2 (THk(  

o~ ( _ l ) J t j (  ~ (aT C)j m(cTsC)j '~ 
+52 .j=3 j \/=1 (aT Xk l-bi)J (cTxk-l--~k)'J/" 

Since 1/(1.1(a~x k 1 _ b,)2) <~ D ,  <~ 1.1/(aV~x k-Z - b,):, 

II2 THk 112( m_ (aT~z)21_bi)2 ~ (cTxk-l--flk)2/m(cT~)2 ¢ ~=~ ~E(~x ~ 

<~ ½( l"l ) t2 ' f (  A T D A  + ( c Tx k 1L flk)2 ¢¢ f ) ' 

<~ 0.55r2fk(x k 1). (5.1) 

Next, note that for j ~> 3, 

E 0 ~  = ~ EI0,V<~I~I j i i 
So from (5.1) we can conclude that for j~>3, 

Iri(i~=l ( a ~ )  j m ( c ~ y  ~ I (1.1r2fk(xk-1) ) j/2. 
( a ~ x  ~-1 - b,) j ~ (c~x  ~-1 - ~ ) J / I  

Thus 

j \i=1 (aTixk-l--bi) j (cVx k 1--[3k)i,]l 

<~ ~ !(1.1r2fk(xk ')) j/2 
j=3J 

r3 f ~  Xk-I ) rk/ k 1, 
~<1(1"1)3/2 l --~/1.1r2fk(x~-l) ] tX ). (5.2) 
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From (5.1) it follows that within the ellipsoid Ek(r)  the magnitude of the second 
order term in the above series is upper  bounded by 0.55r2fk(xk-~). (5.2) gives an 
upper  bound on the sum of the magnitudes of  the third and higher order terms in 
the above power series for a point in E g(r). Next, we shall lower bound the maximum 
change in the linear (first order) term that is possible within the ellipsoid Ek(r) .  
Such a bound is provided by Lemma 9. Let x '  be the point where the line joining 
x k-a and w k intersects the boundary of the ellipsoid Ek(r) .  By Lemma 9, 

(rlk)T(x'--X k 1)<~--ixrfk(xk-1). 

Since (~?k)Tzk(r) <-<- (~7 k)TX', the lemma follows from Lemma 9 and the upper  bounds 

given by (5.1) and (5.2) on sum of the second and higher order terms in the above 
power series. [] 

Lemma 9. Let x' be the point where the line joining x k-1 and to k intersects the boundary 
of the ellipsoid Ek(r) .  I f  0 <fk(xk-1 )  <~ !S22,, _!~33,,, where 0 <~ ~ < 1, then 

where 

(T]k)T(x,__ xk--1)~__l.l, rfk(x k 1) 

( oo a~ ) ,<2 
p~= (l~fO~-6) 1 . 1 j ~ o ( j + l ~ - ( j + 2 ) ]  . 

Proof. Let x k - ~ - - x ' = h u ,  where u is the unit vector in the direction of x k i , 
and ,~ = IIx k 1-x'Lt2. w e  have 

A2ur(ArDA+(crxk_ml  f l k )eCCV)U=r2fk(xk- ' ) .  

Since 1/(1.1(a~x k-~ - bi) 2) <~ D,  <~ 1.1/(a~x k-1 - b,) 2, 

Thus 

Hence 

A2uTHku>~ r2fk(x  k 1)/1.1. 

A >~ r ( f k (xk -1 ) / (1 .1uTHku) )  1/2. 

( ~ , T ,  k-,  , , > r ' / f ~ ( x  ~-~) (~k)TU 
rl ) tx  - x  ) ~  

, / - f x  

r fk (  x k- ' )  ( vk )  T ( X k- '  - ,o k) 
>I (5.3) 

a,57f ~ ) , / ( X k - "  -- O,~)THk(xk-~ -- ~ok) " 
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Let Yi = (a~xk- ' - -aTwk)/(a~wk--bi)  for  i =  1 . . . .  , m, 
(erxk-I _ eTo)k)/(e+o)k _i lk)  for i = m + 1 , . . . ,  2m. Then 

(r/k)V(xk l - - O ) \ ) =  Y. - 1  , 
i = l  

(x~-'-o~ ~)'H~(x ~-'-o~) = X 1 
i=l 1 +Yi 

and 

and let yi = 

and 

Lemma 10. Suppose 
1, 2 , . . . ,  2m. Then 

E 1 ~ > ( 1 - 8 )  E 1 +  1 
i:1 1 + Yi i=l Yi 

) 1 o~ 6i 
5~ l+yi  1 ~>/_, I n -  

' = 1  i = l  \ l + y i / / i ~ - o ( j + l ~ j + 2 ) "  

2 r;a 
Proof.  Since 5~i=1 Yi =0, 

y~ l + y i  - 1  = ~  1 + = 
i = l  i = l  i = l  \l+yi,/" 

S o  as [y~[ <~ 8, 

) 2 1 - 1  = ~>(1-~) 2 (1+y,)2 
i=1 i=l \ 1  +yi,] i=1 

2m ( 1 

i=1 l~-yi 

2 m  2 m  
that } ~ = ~ y , = 0 ,  ~ ]~=a ln ( l+y~)<0  and ly~[<~6<l for i= 

- - - 1 )  2 

fk(xk--1) = Y~ In 
i = l  

F rom Lemma 4 in Section 4, 

2 m  

yi=O. 
i=1 

Since f k ( x k - l )  ~< ix2 1X3 ~, --~,  , where O~ < ~ < 1, f rom Lemma 5 in Section 4 we get that 

lyi[ <~ 8, i =  1 , 2 , . . . , 2 m .  

We can thus apply Lemma 10 below, and f rom (5.3) above conclude that 

( ~ k ) T ( x k - I  -- X t ) ) r f k ( x  k - l )  1 . 1  [ ]  

j= ( j +  l ) ( j + 2 )  
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2m 
Next, as Y, i= ~ Yi = O, 

~ In = ~ (y~- ln( l+y~))  
i ~ l  i = l  

y~ ( l + y ~ ) ( y ~ - l n ( l + y i ) )  
= E 

yi¢O,l~i~rn 1 + Yi y2 

Using the Taylor series expansion for ln(1 +y~), for y~ ~ 0 we get 

( l + y i ) ( y i - l n ( l + y g ) )  ~,°° ( _ l y + l y j  
_ l+f  (J+ + 2) 

~X3 

~ = o ( j + l ) ( j + 2 )  as ly, l~<~. 

Thus 

The lemma then follows. 

Z In ~< ~ 0 ( j + l ) ( j + 2 )  ~ \ l + y J "  i ~ l  j 

[] 
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6. Amortiz ing the number of  arithmetic operations 

In this section we show that the total number of arithmetic operations performed 
by the algorithm is O (( mn 2 + m ~.5 n) L).  The amortization of the number of arithmetic 
operations is similar to the one in [5]. The total number of arithmetic operations 
is determined by the number of operations required for the following computations. 

(1) Solving systems of linear equations to determine the directions ~k. 
(2) Computing the gradients ~? k of the potentials f k ( x )  and computing the scalars 

t k. 

I n t h e  k, th iteratio~ we  de.ter~ine a' direction ,~k by  solving the ~yst~ni'6f ~ilae~ir 
of ~equ~ti0hs . ! ~: ~ ~ ,~ ~ 

::( c x - . p  ) . . . .  / = ~ " ": '-~ " 

where rj~ iS the gradient o f f k ( x )  evaluated at x k-~, and we find a scalar t k ~uch tha~ 

O.O18<~( tk i~( ,~ )T(AT.DA+ ~ r ' k m  ° ~k,2CC~T) sck~<0.0196. " ~ " " 

The gradient n k can be computed in O(mn) operations, and once we have ~k, a 
required t k may also be obtained in O(mn ) operations. The total number of iterations 
is O(x/-m L). So the total number of operations required to compute tl k and 
scalar t k over all the iterations is O(m~SnL). We maintain ( A T D A )  -J and update it 
whenever the matrix D changes. Once ( A T D A )  -~ is available, ( A V D A +  
( m / ( c T x  k-~ -/3k)Z)ccX) - / m a y  be computed in O(n 2) operations as the two matrices 



190 P.M. Vaidya / An algorithm for linear programming 

differ by a rank one matrix, and then ~:k may be obtained in O(n 2) extra operations. 
We shall show that the total number of operations required to maintain (AVDA)  -1 
during the entire execution of the algorithm is O(mn 2L), and then the desired bound 
on the total number of  arithmetic operations performed by the algorithm follows. 

At the end of the kth iteration D is updated as follows. For i = 1 , . . . ,  m, the 
ith diagonal element D ,  is reset to 1 / ( a ~ x k - b i )  2 i f  Diiff:[1/(1.1(a~xk-bi)2), 
1.1/(ari xk - bi)2]. Suppose that D'  is the matrix obtained by changing the ith diagonal 
element of  D to d'. Then 

A T D ' A  = A T D A  + ( d ' -  Dii)aia~. 

Thus whenever an element of  D is changed, A T D A  changes by a rank one matrix, 
and hence ( A T D A )  -I changes by a rank one matrix. Therefore when an element of 
D is changed, (ATDA)  -1 may be updated in O(n 2) operations, using the rank one 
update formula 

( B + u v  v) l = B - 1 - -  B lUVT B I/(I+vTB--Iu). 

So to obtain a bound of O(mn2L)  on the total number of operations required to 
maintain ( A T D A )  l, it is sufficient to show that the total number of changes to the 
matrix D during the entire execution of the algorithm is O(mL) .  

Let 

4) k = Iln( ( aV~ x k - b i ) /  ( a T x k - 1  - bi) )l. 

Suppose D,  was reset at the /th iteration and at the j th  iteration but was not reset 
between the /th and j th  iterations. Then ~=~+l q~k ~>ln(1.1), and the total number 
of  times Dii is changed during the execution of  the algorithm is O(~tk I ok), where 
I is the number of iterations performed by the algorithm. Thus, the total number 

O m i of changes to D is (~ i= l~k- I  ~bk) ' 

Z" E' A bound on ~=l k=l ~bk may be obtained as follows, x k lies within an ellipsoid 
around x k-l,  and xk--x k-1 satisfies the condition 

m (xk--xk-1)T( ATDA+ (cTx k I [~k)2CcT) ( x k - x k  1)~0.0196. 

Since at the start of the kth iteration, for i = 1 , . . . ,  m, D,  c 
[1/(1.1(a~x k-1 - b~)2), 1 .1 / (a~x k ~ - b~)2], it follows that 

and thus 

i=lkaTxk l _ b i - 1  ~< 1.1 x 0.0196, 

E \ a ~ - / ~ i  1 ~<l.1x0.0196×.~/m. 
i = 1  

Then using the Taylor series expansion for the natural logarithm, it is easily shown 
that ~,~l ~bk = O(~/-m), and since I, the number of iterations, is O(, /m L) we may 
conclude that ~ n  l ~1k= 1 4~k = O(mL) .  
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7. Recasting a linear program into the required format 

In  this section we show how to t ransform the given linear program so that  a suitable 

starting point  for the t ransformed program is available. There are several ways to 

carry out such a t ransformation.  The one we give is similar to the one in [8]. 

However ,  there is one critical difference. The t ransformat ion given in [8] can increase 

the parameter  L by a factor  o f  n in the worst case, whereas the t ransformat ion  given 
in this section can increase L by at most  a constant  factor. The given linear p rogram 

is 

m a x  pTz 

s.t. Hz >~ q 

where z c R n~, p ~ R "~, q c R"I, and H ~ R m~×n,. We reserve A, x, b and c to refer to 
a l inear p rogram that is already in the required format.  Let 

L~ = log2(largest absolute value of  the determinant  of  any square submatr ix o f  H )  

Note  that: 
(i) I f  the given linear p rogram has an opt imal  solution then every opt imal  vertex 

z °p~ satisfies the condit ion I Iz°Pt[[~ 2 L~. 

(ii) I f  the poly tope  {z: Hz >t q} is u n b o u n d e d  then there is a feasible solution z f 

such that IIz ll   2L1. 
Let t e N ,  let e e R  "~ be a vector given by e T = [ 1 ,  1 , . . . ,  1], let h = m~n~2 2c', and 

let /x = 2 3°L,. Let hT denote  the ith row of  H. The t ransformed linear p rogram is as 

follows. 

max p Tz + /zt 

s.t. h ~ z - ( h + q ~ ) t > ~ - h ,  i = 1 , 2 , . . . ,  m~, 

- eTHz >~ -h ,  

z j ~ - h ,  j = 1 , 2 , . . . ,  n~, 

- z j ~ > - h ,  j = l , 2 , . . . , n l ,  

- h t ~  > - h ,  

( ( m + l ) h  + e T q ) t  >l--h. 

Let m = ml + 2n1+ 3, and let n = nl + 1. Let A ~ Nm×n denote the constraint  matrix, 

b ~ Nm denote  the right hand  side of  the constraints,  c ~ ~ denote  the objective 

funct ion vector,  and x c ~ denote the variables in the t ransformed linear program.  
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Note that c T = [pT, ~ ]  and x T = [z T, t]. The transformed linear program may be 

written as 

max cTx 

s.t. A x  >i b. 

The transformed problem has the following properties. 
(a) Since ((m + 1)A + e r q ) >  O, t is bounded, and thus the polytope {x: A x  >~ b} 

is bounded. 
(b) Let 

L = log2(largest absolute value of the determinant of  any square submatrix of A) 

+ log2(max  c~)+ logz(max  b~)+log2(m + n). 

Then L<~40L~. The bound on L follows from the observations that the largest 
absolute value of the determinant of  any square submatrix of A is at most (ml + 
//1)62 6L1, and that max /b  i <~ mln~22L' and maxi ci <~ 23°L~. 

(c) 0 is feasible. Since the sum of  the rows of A is the zero vector and all the 
m 

coordinates of  b have the same value, the gradient of the function Y,~=~ ln(a~x ba) 
vanishes at 0. Furthermore, as the polytope {x: A x  >1 b} is bounded, 0 is the unique 
point that maximizes the function Y~i~ ln(a~Vx- hi). 

(d) A point 

[;] 
is feasible for the transformed linear program iff H z  >~ q, eYHz  ~< A and -A <~ zj ~< A, 

j = l , 2  . . . . .  nl. 
(e) # is large enough so that if there exists a feasible point with t = 1 then every 

optim.al sottation has t = 1. This is because the minimum vertex to vertex variation 
. function p z o v e r  the entire ~f,~lle ~n~t ion /z t  exceeds the maximum change in the Y 

l~olytot~) {X: A x  ~ b}. 
We shall noW~show that 0 is an adequate starting point for running the algorithm 

in Sdcti0n 3 on t~he transformed problem. Let/3 o= -m322~. Let 

lz~(xj  = ln (a~x  - bi) + m In(cTx --/3°), • : 
i = l  

and to o be the point that maximizes F°(x ) .  Since the magnitude off l  ° is large enough, 

Im ln((cYw ° flO)/(cYx--/30))[<~ 1 / m  

for any point x in the transformed polytope. Thus, F°(w °) - F°(0) ~< 0.04 as required, 
for rn~>4. 

Finally, we have the following easily shown lemma. 
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Lemma 11. Let 

I Z°pt ] 

/opt J 

be an optimal vertex in the transformed linear program. 
( i )  I f  t °p t  ~ 1 then the original linear program is infeasible. 

(ii) I f  t °pt = 1, eTHz °pt < A and Iz~Ptl < A, j = 1, 2 , . . . ,  hi, then z °pt is an optimal 

vertex in the original linear program. 
(iii) I f  t °p t  = 1,  and either z~ - A, for some j, or eTHz °pt = A, then either the I opt -- 

original problem is unbounded or z is an optimal solution. In this case the transformed 
problem is solved again with A replaced by 2A to obtain a new optimal point 

[::] 
I f  p Tz* > pTz°pt then the original problem is unbounded, otherwise Z °pt  is an optimal 

solution. [] 

8. Precision of arithmetic operations 

During each iteration of the algorithm, a direction is obtained by solving a system 
of linear equations whose matrix is symmetric positive-definite. The error in the 
solution of such a system of linear equations is directly related to the extremal 
eigenvalues and the condition number of  the matrix describing the system, and the 
precision used for arithmetic operations [10, 12]. In the first part of  this section we 
shall bound the entries in the matrix D, and also the extremal eigenvalues and the 

condition number  of the matrices arising during local optimization at each iteration. 
The bounds obtained will be valid during the entire execution of the algorithm. 
Using these bounds we shall argue that it is adequate to maintain (AVDA) -1 to an 

accuracy of yL bits for some constant % Then in the second part  of  the section we 
shall describe how sufficient accuracy in (A•DA) ~ may be maintained during rank 

one changes using O(L) bits of  precision. 

8.1. Extremal eigenvalues and condition number of  local optimization matrices 

As before let x k i be the point at the beginning of the kth iteration. During the kth 
iteration we determine a direction ~k by solving the system of linear equations 

ATDA+(cTxk  cc T ~k =- -7  

where D is a diagonal matrix such that D, c [1/(1.1(aTx k-1 -- bi)), 1.1/(aVx k 1 _ bi)], 

and 

( m ) 
~ a T x k ! , _ b  ai+CTxk-, ¢lkC i=l 
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is the gradient o f f k ( x )  evaluated at x k-1. We maintain (ATDA) i by performing 
rank one changes, and compute (ATDA+(m/(eTxk-I--/3k)2)ccT) ~ by a rank one 

change to (ATDA) -~. 
We shall first bound the entries in D. Note that the absolute value of a T x - b i  

and cTx for all feasible x is upper bounded by 2 4L. Thus 

aTxk-1 _ b i <~ 2 4L. 

Moreover, we may assume that cVx k ~ - /3  k-~ > 2-13L (since the algorithm halts when 

cVxk--fl k is less than 2 ~3L). Next, we shall lower bound the value of aTx k 1-bi,  
for l<~i<~m. Let ilk-1 be obtained by rounding/3k-1 to 15L bits. A vertex of the 

polytope {x:Ax>~b, cVx>~flk 1} has rational coordinates with a common 
denominator which is at most 216L, and so the maximum change in the value of  

aTx--bi over this polytope is at least 2 -16L. Thus, the maximum value of aV~x-bi 
over the polytope {x: Ax>~ b, cVx>~fl k-~} is at least 2 -16L. Then from Lemma 4 in 

Section 3, 

a T  co k - I  _ b i ~ 2 - 1 6 L / ( 2 m ) ,  

where w k-a is the point that minimizes fk - l (X) .  Furthermore, as f k  l(xk 1) <~ 0.04, 

from Lemma 5 in Section 3 we get that 

a T X  k - 1  --  b i ~ 2-16L/(4m), 

for m~> 16. Thus from the bounds on aV~x k 1 b~ and the manner in which D is 

updated, we may conclude that the entries in D are upper and lower bounded by 
2 36L and 2 -8L respectively. 

Before obtaining bounds on condition numbers and eigenvalues, we shall define 

some standard notation [10, 12] that will be used throughout this section. For a 

matrix B, let hmax(B) and )tmin(B ) denote the largest and smallest eigenvalues of B. 

The 2-norm of B, denoted ][BI[2, is defined as 

IlUlJz='/Amax(BTU). 
The frobenius norm of B, denoted lIB H F, is defined as 

IIBIIF= B~ , 
i=1j=1 

where p and q denote the number of rows and columns of B respectively, and B~j 

denotes the /jth element of  B. Note that for a p x p  matrix B, IIBII2~< IIBIIF, and 
IIBII~,/P[IBII2. For a list of the properties of these norms the reader may refer to 
[10, 12]. The condition number of B, denoted K(B), is defined as 

K(B) = 118112118 1112. 

Note that if B is symmetric positive definite then 

K(B)  = Arnax(B)/Amin(B), (8.1.1) 

IIB[[2 = Amax(B) (8.1.2) 
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and 

IIB-1112 = 1/Ami,(B). (8.1.3) 

We shall now obtain bounds on the extremal eigenvalues and the condition 
number of the matrices involved in the computation at each iteration in the algorithm. 
Note that D, ATDA and ATDA+(rn/(cTxk-~--~k)2)CCT are symmetric positive 

definite matrices. From the bounds on the entries in D it follows that 

2 -8L~< hmin(D) ~< hmax(D) ~< 236L- (8.1.4) 

An elementary argument using rayleigh quotients [10, 11] shows that 

Amin( A T DA ) ~ Arnin( A T A ) Amin( D ) (8.1.5) 

and 

Amax(ATDA) ~ Amax(AT A)Amax(D). (8.1.6) 

Next, we bound the eigenvalues of ATA. We have 

Ilax[[2 <<- IlallFllxll2 <<- 2Lllxll:.  

Also, 

Ilxll=~ IIA i~IIFIIA, xlI= 

where A~ is an n x n submatrix of A of rank n. By definition of L each entry in A~ -1 
is at most 2 L, and hence 

Ilxll=<~ 2=cllmxllz. 
Thus 

and 

xTATAx 
hmax(ATA) = max ~< 2 2L (8.1.7) 

x xTx 

x T A T A x  
A m i n ( A T A )  = m i n - - ~ >  2 4L. 

x xTx 

From (8.1.4)-(8.1.8) we may conclude that 

2-12L<~ Amin( A T D A  ) ~ Ama×( A T D A  ) ~ 238L. 

Furthermore, 

/~ min ( ATDA Jr 

and 

m ) 
(cTxk-1 _•k)2 ccT ~ Amin(ATDA) ~ 2-12L 

m 
Amax( A T D A q  (cTxk-I_ f~k)2 ccT) 

CC T ~ 2 39L. 

(8.1.8) 

(8.1.9) 

(8.1.10) 

(8.1.11) 
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From (8.1.1), (8.1.9), (8.1.10) and (8.1.11) we get that  

K ( A T D A )  ~ 25°L 

and 

m K(ATDAq'(cTxk l •k)2 ccT) ~ 2  51L. 

Let 3' be a fixed constant  greater  than 200. We mainta in  an approx ima te  inverse 
( A T D A ) a  1 of  A T D A  such that  

( A T D A )  a' = ( A T D A )  ' + a 

where [[A 112 <~ 2-~L" Then,  f rom the above  bounds  on condi t ion numbers  and eigen- 
values, and  noting that  cTx k-I _flk>~ 2-14L, it is easily shown that  

m ( A T D A ) a ' C C T ( A T D A ) a  ' { A T D A +  m T~ -1 
( A T D A ) a I - - ( c T x k - 1 _ t ~ k ) 2 + m c T ( A T D A ) a l C = \  i-I (cTx k I--]~k) 2cc z] +At  

where I[A'II2 <~ 2 -(~ 8o)c. Once  the approx ima te  inverse (ATDA)7~ 1 is available,  x k-1 + 

tks ck is ob ta ined  as follows. First, the gradient  r/k, the approx ima t ion  to ( A T D A +  

( m / ( c T x  k - l - f i k ) z ) ccT ) -~  given by the above  formula ,  the direction s tk, the scalar 
t k, and x k 1 + tk~:k are all c o m p u t e d  using 23'L bits o f  precision.  Then each coordinate  
of  the point  x k-~ + tk~ k is rounded  off to 40L bits. 

Finally, as ]] ~7 k [[2 <~ 222c, and  t k <~ 22L, it is easily shown that  the error in x k-I + tk£ k 

is O(2-4°L). Then  the potent ia l  difference be tween the compu ted  and the exact value 
of  x k - l +  tk£ k is neglib!e. 

8.2. Maintaining accuracy in the inverse 

Here  we shall briefly descr ibe how to main ta in  accuracy  in ( A T D A )  -1 during rank 

one  changes.  Let B denote  the matrix A T D A  before  a rank one change,  and let 
B + uv T, where  u c R n, v c ~n, denote  the matr ix  A T D A  after  the rank one change. 

Given  an approx ima te  inverse B '  o f  B, we must  compute  an approx ima te  inverse 
of  B + uv T. We may  restrict ourselves to the case where  v is either u or - u ,  because  

whenever  the ith e lement  of  D is upda ted ,  A T D A  changes by a rank  one matrix of  
the form ' T d a i a i ,  where d '  is some scalar. Let us assume that  an approx imate  inverse 
B '  o f  B, such that  

B B ' = I + E ,  and [[E111~<2 ~,L. 

for  some constant  3'1, is available.  Fur thermore ,  let us also assume that  each entry 
of  B'  is represented  using 3'2L bits for some constant  3'2- A good  approx imat ion  to 
(Bq-uvT)  -1 is compu ted  as follows. 

(1) C o m p u t e  an initial app rox ima t ion  B " =  B ' - B ' u v W B ' / ( l  q-vTB'u) .  

(2) ( B q - u v T ) ( B  ") -~ I q - E  1 q-E2, where E2 is a constant  rank matrix computab le  
in O(n  2) operat ions .  An adequa te  approx ima te  inverse of  B + uv T is obta ined by 
rounding  the entries in B " - B " E 2  to mult iples  of  2 ~2L. 



P.M. Vaidya / An algorithm for linear programming 197 

Let B " - B " E 2  + E3 be the compu ted  app rox ima te  inverse of  B + uv T. Then 

(B + uvT)(B " -  B"E2 + E3) = I + E,  - (E,  + E2)E2 + (B + uvT)E3. 

We shall obta in  an uppe r  b o u n d  for IIE2112 in terms of  IIE, Ih. Using this bound  we 
shall show that  it is poss ible  to choose 3'1 and 3'2 so that  

l I E , -  (E, + E2)E2 + (B + uvT)E3I]2 <~ (1 + 2-L)IIE1112. 

Note  that  f rom (8.1.2), (8.1.3) and (8.1.9) in Section 8.1 it follows that  

2- '2"<~ 1/113-'112- < Ilull=~< 2 38L (8.2.1) 

and 

2 --12L <~. 1/1] (B + u'vT) -1112 ~< II B + uvTll2 ~< 2 3sL. (8.2.2) 

Next ,  we obta in  a lower b o u n d  for 1 + vTB'u. Using the rank one correct ion fo rmula  
for  the inverse of  a matr ix ,  we may  write 

( B - 1 u ) ( B - l v ) T / ( 1  + v T B - ' u )  = B -1 - (B + I,/'/)T) -1,  

and so 

Tn-I  , ~  [[(B-'u)(B-'v)TIIF 
II+v ~ u l ~ [ [ B _ - ; ~ , l l  ~ 

IIB-'ulldlB 'vii= 
,/-n(llB-'[12+ [[( B + uv T)-'l[2) 

/>2 9°Lllull211v[[2 (from 8.2.1, 8.2.2). 

Noting that  B'  = B -1 + B 1E 1 we get 

[1 -k vTB'u[ >~ ]1 + uTB-1u ] -  ]uTB-1E1/g[ 

1> ( 2 -9°L-  IIB-'lldlE,[i2)iiuildlvll2. (8.2.3) 

Next,  observe  that  
E2 = - E ,  uvTB' / (1  + vTB'u)  

and hence 

11E2112 ~< IIE, IIdlB'lldlulldlvll2/[l + vT B' u] 
2 '3L 

4 2 90L 212LIIE, 112 ]IE,112 ( f rom 8.2.1, 8.2.3). 

F rom the bounds  on IIE2112, and on [IB+uvTII2, it fol lows that  we may  choose  

suitably large values for  the constants  3', and  3'2 so that  IIE@ih, lIE,E2112, and 
II(B + HvT)E3112 are each less than  2 -(L+2) IIE,I12. Choos ing  3'1 ~> 300 and  3'2 ~> 3'1 + 50 
suffices. Then  

II E, - (E, + E2) E2 + (B + u~) T) E3112 <- (1 + 2- ~)II E1112. 

Thus the error  in the main ta ined  app rox ima te  inverse of  A T D A  grows very slowly. 
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As before let (ATDA)a  ~ be the maintained approximate inverse of ATDA, and let 

( A T D A ) ( A T D A ) a  1 = I + E. 

Suppose initially [[ E 112 ~< 2-~'+~)L- Then from the above bound on the growth of the 
error in ( A T D A ) ;  ~ we may conclude that af ter j  rank one changes to ATDA, j <~ m + n, 

[IEl12~<(l+Z-L)j2 ~,+~)L. Thus f o r j < ~ m + n ,  IIE]12~<2 ~,L. After m + n  rank one 
changes to A T D A  we can recompute ( A T D A ) ;  ~ by directly inverting ATDA. (This 
recomputation is performed at most O(L) times, and so does not increase the running 
time of the algorithm.) 

As mentioned in Section 8.1, we require an (ATDA)~ ~ such that 

( a T O a ) a  ' = (ATDA)  - '  + A 

where IIA 112<~ 2 vL. It is easily seen that A = (ATDA)-~E. So from (8.1.2) and (8.1.9) 
in Section 8.1 it follows that if y ~ y + 5 0  then [[aJlz<~2 -vL. So from the other 
requirement on y~, we can conclude that choosing y~/> max{y + 50, 300} is adequate. 

Finally, since each entry in B' is represented using yzL bits, the intermediate 
matrices B", E2 and B " - B " E z ,  in steps (1) and (2) above may be computed exactly 
using rational arithmetic and O(L) bits of precision. 

9. Finding an optimal vertex 

In this section we describe how to find an optimal vertex by performing at most 
O ( m n  2) arithmetic operations to a precision of O(L) bits, once a feasible point that 
is sufficiently close in objective function value to the optimum is available. Let 
be a point such that 

A:~> b, 

c T ~  ~ f lmax  -- e 

where e = 2 -12L and fl~ax is the maximum value of  cTx over the polytope {x: Ax  >1 b}. 

Given ~, there are several ways of finding an optimal vertex x °pt, the procedure we 
shall describe is similar to the one in [7, pp. 173-174]. First, note that flmax is a 
rational number with numerator and denominator at most 22L. So flma× is the unique 
rational, with denominator less than or equal to 22L, closest to cT~, and may be 

computed using the method of continued fractions. Let S denote the set of column 
vectors of A T. W.r.t. a point x define V(6, x) to be a subset of S u {c} such that: 

(i) IcTx--/~maxl~ 6 iff c c  V(6, x). 

(ii) For each ai ~ S, ] a ~ x -  bi[ ~ 6 iff ai c V(6, x). 

V(6, x)  may be thought of as the set of constraints that are almost satisfied with 
equality (with an error of at most 6). Let dim(V(6, x)) denote the dimension of the 
vector space spanned by the elements of V(6, x). Using ~ we obtain a point x* 
such that: 

(i) IcTx~:--~maxl ~<2e. 
(ii) aTx * >i bi - 2e, ai ~ S. 
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(iii) Every vector in S ~ {c} can be expressed as a linear combination of the 
vectors in V(2e, x*), i.e. dim(V(2e, x*)) = n. 

Then the point x °pt which satisfies the system of linear equations 

aTx °pt= bi, a i c V ( 2 e ,  x*), 

cTx °pt ~ l~rnax 

is feasible, and is an optimal vertex (see [7, pp. 173-174]) (note that even though 
the V(2e, x*) may contain more than n vectors the above system of linear equations 
does have a solution and so x °pt is a well-defined point). Once g is available, X °pt 

may be computed by using a version of  gaussian elimination given in [2, 3], and 
performing rational arithmetic with O(L) bits of  precision. 

We shall give a procedure to obtain x*. The procedure is almost identical to the 
one given in [4, pp. 173-174]. The idea is to stay close to the plane cTx = ~max,  

remain almost feasible, and at the same time increase the rank of the set of constraints 
that are almost satisfied with equality. Suppose that we have a point x'  such that: 

(i) [c'rx ' - ,6max I ~ 3. 

(ii) aTx'>~bi-8,  a icS .  
(iii) There is a column a~ of A T which is linearly independent of  the vectors in 

V(3, x'). 
We may then compute a u such that 

IcTu[ ~ 2-I6LE, 

laTul <~ 2-t6ce, a i E V(a, X'), 

aV~u <~ -1.  

Thus by moving in the direction of u from x'  we can substantially decrease the 
T distance from the constraining plane a .  x = b.  without appreciably changing the 

value of the objective function or the distance from any of the constraining planes 
a~x = b~, a~ c V(6, x'). Specifically, we can find a scalar 0 <  h <~2 6L such that: 

(i) [CT(X'+ AU) __/~max[ ~ 6 + 2 - 2 % .  

(ii) aV~(x'+ Au)>~b~-6-2-ZLe,  a ~  S. 
(iii) d im(V(8+2-2Le ,  x'+Au))>~dim(V(6,  x ' ) ) + l .  
The existence of such a A follows from two observations. First, the coordinates 

of  any feasible point are bounded by 2 L. Second, if aj can be expressed as a linear 
combination of the elements of V(/~, x') then the coefficients in the linear combination 
are rationals with numerators and denominators bounded by 2 2L. 

Thus we can construct a sequence x ° = ~ , x  ~ , . . . , x  k , . . . , x *  such that 
d im(V(e  k, x k ) ) >  dim(V(~ k-l, xk-~)), where e k = (1+ k2-L)e. We shall show that 

computing x* from ~ requires O(mn 2) arithmetic operations, and it is adequate to 
perform each operation to a precision of O(L) bits. Let Mk be a matrix such that: 

(i) Each row of Mk is an element of  V(e k, xk). 
(ii) The rows of Mk are linearly independent.  

(iii) The number  of  rows of Mk equals d im(V(e  k, xk)). 
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Let ai be a vector in the set S -  V(e k, xk). Note that a t is linearly independent 
of the rows of Mk iff the orthogonal projection of  aj onto the orthogonal complement 
of  the row space of Mk is non-zero. Since entries in A are integers, the orthogonal 
complement of the row space of Mk (i.e. the subspace {x: Mkx = 0}) has a basis 
such that the coordinates of  each vector in the basis are rationals with a common 
denominator which is at most 2 L. Thus if the orthogonal projection of aj onto this 
subspace is non-zero then the 2-norm of  the orthogonal projection is at least 2 -6L, 

Furthermore, the said orthogonal projection of aj is the vector 

(I - M~(MkM~)-aMk)aj. 

To be able to compute the orthogonal projection to a sufficient degree of accuracy, 
we maintain an approximate inverse (MkM[)a 1 of MkM~ such that 

(MkM[)~ ~: (MkM[) ~ + Ek 

where Ek is an error matrix such that [[Ek [[2 <~ 2 -~3L for a suitable constant Y3 > 100. 
(Alternately, the LU decomposition of MkM~ could be maintained.) In a manner 
similar to Section 8.1, it is easily shown that 

2 -4L~ Amin(MkM~) <~ hr.a×(MkM'~) <<- 2 2L. 

Then from the bounds on the eigenvalues of Mk Mk v, it is easily seen that using the 
approximate inverse of MkM~ (instead of the exact inverse) will produce an error 
of at most 2 -(e3-4°L) in computing the 2-norm of the orthogonal projection of aj. 
So from the computed orthogonal projection we may correctly determine whether 
a t is or is not linearly dependent on the rows of Mk. Once the approximate inverse 
of MkM[ is available, finding the orthogonal projection of a t requires O(n 2) 

Mk+I Mk+I is obtained operations. Furthermore, a suitable approximate inverse of V 
from the approximate inverse of  MkM{ in a manner similar to Section 8.2, using 
the updating formula [5, 12], 

1) T d - v T M - l v  - ( M - i v )  T ' 

and this requires O(n 2) arithmetic operations performed to precision of O(L) bits. 
Thus given ~, x* may be computed in O(mn 2) arithmetic operations, with each 
operation being performed to a precision of  O(L) bits. 
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