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Abstract

Given a set V of n points in Ie-dimensional space, and an
L -metric (Minkowski metric), the All-Nearest-Neighbors
p:oblem is defined as follows: For each point p in V, find all
those points in V -{p} that are closest to p under the dis­
tance metric L,. We give an O(n logn) algorithm for the
All-Nearest-NeIghbors problem, for fixed dimension k and
fixed metric L

f
• Since there is an f1( n logn) lower bound, in

the algebraic decision tree model of computation, on the time
complexity of any algorithm that solves the All-Nearest­
Neighbors problem (for Ie = 1), the running time of our algo­
rithm is optimal upto a constant.

1. IntroductIon

The All-Nearest"':Neighbors problem is one of the very
well studied proximity problems in computational geometry
[2, 3, 4, 5, 7). We are given a set V of n points in k­
dimensional space and a distance metric Lq • Each point x is
given as a k-tuple of real numbers (Xl' x2' •.••, xk). The Lq

distance between a pair of points x, y, is given by
1

eL' Ix;-" ~)f (Note that the L 00 distance between x and 'Y is,
given by max lx, -11. ~. The nearest (closest) neighbors of a

i
point p EV are all those points in V that are closest to p
under the distance metric Lq • The All-Nearest-Neighbors
problem is defined as follows: For each point p in V, find
the nearest (closest) neighbors of p. We assume that the
dimension k and the distance metric Lq are fixed. We shall
use distance for L q distance, andd(x, y) to denote the dis­
tance between x and y.

As far as the model of computation is concerned we
assume that all arithmetic, comparison and memory access
operations require constant time.

The simplest algorithm for the All-Nearest-Neighbors
problem may be phrased as follows: For each point p in V,
explicitly test if every point p' in V - {p} is a closest neigh­
bor of p. This algorithm runs in time O(n2). However, it is
possible to obtain algorithms that require o(n2

) time. in [2],
Bentley utilises multidimensional divide and conquer to
develop an O( n (logn )Ie-i) algorithm for the All-Nearest­
Neighbors problem. An 0 (n log2h') algorithm is presented in
[4], where 8 is the ratio of the maximum to the minimum dis­
tance between a pair of points in V.

This research was supported by a fellowship from the Shell Foundation

0272-5428/86/0000/0117$01.00 © 1986 IEEE
117

We give an O(n logn) algorithm for the AII-Nearest­
Neighbors problem. In the algebraic decision tree model of
computation, there is a lower bound of il( n logn) on the time
complexity of any algorithm that solves the AII-Nearest­
Neighbors problem for dimension k=1 [1, 5]. So the running
time of our algorithm is optimal upto a constant.

A generalization of the All-Nearest-Neighbors problem
is defined as follows. For a point p E V, let D(p) be the mul-
tiset of distances defined by
D(p)={z:z=d(p,p'), p'EV, z~}, and let
d1(p) ~ d2(p):S ..•. :S dm(p) be the m smallest distances in
D(p ). Then the m-Nearest-Neighbors of p are all those
points in V whose distance from p is at most dm(p). The
All-m -Nearest-Neighbors problem is as follows: For every
point p in V, find the m-Nearest-Neighbors of p. A slight
modification of our algorithm for the All-Nearest-Neighbors
problem leads to an O(m n logn) algorithm for the All-m­
Nearest-Neighbors problem.

We note that if the metric in the given problem is posi­
tive definite or semidefinite rather than one of the standard
L q metrics, the problem can be transformed in linear time to
a problem with L 2 (euclidean) metric without increasing the
dimension.

We define a box b to be the product J1XJ2X ....•XJIe of
k intervals (either closed, semi-closed or open), or
equivalently, the set of those points x =(x1' x2, •••• , xk) such
that Xi lies in the interval Ji , for i =1, ... .,k. A box is a cubi­
cal box iff all the k intervals defining the box are of identical
length. The centre a(b) of a box b is defined to be the point
(0I1(b), ....,a,,(b)) where a,(b) is the centre of the ith interval
defining the box, for i = I, ....,k. For a hyperplane h =
{x : pT x=,}, we define L(h) to be the left open half-space
{ x : (3T x <,}, and R(h) to be the right closed half-space
{x :,aT x 2,}.

2. An Overview

In the algorithm we maintain a collection B of disjoint
closed cubical boxes which contain all the n points in the
given set V. Each box has been shrunk as much as possible
so that further shrinkage would either destroy the cubical
shape of the box or push out of the box a point in V that was
originally located in the box. With each box b E B, there are
associated two subets of B, Neighbors (b) and Attractors (b )
such that

(1) For each point p E V, every nearest neighbor of p is
located in box b itself or in some box in Neighbors (b).
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(2) Attractors(6)={6':6ENeigh6ors(6')}. Thus if
p E 6nV is the nearest neighbor of some point p' E V
then p' must be located in box b itself or in some box in
Attractors(b).

In the beginning, B contains a single box which is a
smallest cubical box containing all the points in V. At the
end, every box b EB is degenerate and consists of a single
point in V i.e. ~1=~nvl=l, and Neighbor8(b) is exactly the
set of nearest neighbors of the unique point in 6nV.

Let dmax( 6) denote the greatest distance between a pair
of points in 6, and let dmax(b, 6'), dmin(6, 6'), respectively
denote the maximum and minimum distance between a point
in b and a point in 6'. For each box 6 EB, we maintain a
parameter Estimate (6) given by

I dmax(6), if~nv12 2
Estimate (b ) = .

min ( dmaxJ b, b') }, otherwise
b'ENeighbors( b)

For each point P E 6nV, Estimate(b) serves as an upper
bound on the distance between p and a. nearest neighbor of
p . In order to eliminate unnecessary boxes from
Neighbors (b), we ensure that Neighbors (b) satisfies the
invariant

\/ 6'ENeighbors(b), dmin(b, 6') SEstimate(6)

The algorithm proceeds in stages. At the beginning of
each stage we choose a box 6 in B that has the largest
volume (size) among all the boxes in B for splitting. The
chosen box b is split into 2k cubical boxes 61, 62, •••• , 6

2
., by

k mutually orthogonal hyperplanes passing through its cen­
tre Q( b), each hyperplane being perpendicular to one of the
co-ordinate axes. Simultaneously, the set of points bnV is
split into the sets of points 61nV, b2nV, .... , b2.nV. Out of

these 2k boxes we discard those which do not contain a point
in V, and each of the remaining boxes is shrunk as much as
possible to obtain the set successors (b). The shrinking pro­
cess ensures that when b is split the set of data points 6nV
is also split, or equivalently shrinking guarantees that there
are at least two boxes in successors (b). We then remove the
split box 6 from B and add to B all the boxes in
successors (b). Finally, we create the estimates, and the
neighbor and attractor sets, for the boxes in successors (b );
update the estimates and the neighbor sets for the boxes in
Attractor8(b); and update the attractor sets for the required
boxes in B. That concludes a stage. For each 6 E B, at the
end of a stage Neighbors (b) satisfies the above described
invariant.

Throughout the algorithm Estima.te (b) serves as an
approximation to the distance between a point p E bnV and
a nearest neighbor of p, and the volume (size) of 6 is a meas­
ure of the error in this aproximation. By splitting a box that
has the largest volume, an estimate that has the largest error
is refined.
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3. The Algorithm

Let hi (b) be the hyperplane defined by
hi(b) ={ x: xi=Qi{b)}, where a(b) =(Ql(b), Q2(6), .... ,QIe(b))
is the centre of box b. Let L (h i ( b)) be the left open halfspace
{x: Xi <ai(b)} and R(hi{b)) be the right closed halfspace
-:. x : Xi ~Qi(6)}. Let Immediate -succesors (b) be the set of

boxes defined by
Immediate -successors (b) = {b' : b' = 6nlIn....nlIe,

whereli =L(h.(6)) or Ii =R(h.(b)), ISiSk ~.

Corresponding to a cubical box b, let shrunk( b) be a cubical
box such that

(1) If ~nvls 1 then shrunk (b) = bnV.

(2) If 16 nvl2 2 then (i) shrunk( b)~b, (ii)
shrunk(6 )nV =bnV, and (iii) the maximum L oo dis­
tance between a pair of points in shrunk(b)nV equals
the size of shrunk( b).

We now give the algorithm for the All-Nearest-Neighbors
problem.

Algorithm AII-Nearest-Neighbors

1. Neigh6ors(b o):=</>, Attractors(bo):=4>, B :={bo},

where bo is a smallest cubical box containing all the n
points in V.

2. Repeat ~teJ?~ 2.1 through 2.6 until each box 6E B
satisfies ~I=lbnvl=1

i.e. until each box 6E B is degenerate and consists of a
single point in V.

2.1. Choose for splitting, a box b EB that has the larg­
est volume among all the

boxes in B.

2.2. Split the set of points bnV into the sets of points
blnV, b2nV,. .... , 62·nV,

where bl' b2' •... , b2" are the boxes in
Immediate -successors (b).

2.3. successors(b ):={ 6': 6'=shrunk(b"),
b"EImmediate -successors (b ),

Ib llnvl21 }
2.4. For each box bI E successors (b),

create Neighbors(b') and Estimate (6').

For each box b' EAttractors( b),
update Neighbors (b') and Estimate (6').

2.5. For each box b/Esucce8sors(b),
create Attractors(b').

For each box 6/E(B-successors(b)),
update Attractors (b ').

2.6. B:= B - (b 1u successors(b)

end All-Nearest-Neighbors

Let B" be the set of all the boxes generated during the
execution of the algorithm. The boxes in B· form a tree in
which the boxes are the vertices, the children of b are the
boxes in succes8ors(b), and the leaves are all the points in
the set V. Every box in this tree has at least 2 and at most
2k children. Also the total number of boxes in B * is at most
2n.
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Then

E w(v) = E w(v) + E E w(u)
tJE T vEP vE QUE T(v)

As a vertex v has at most children we have
s (v ) S (1 - 1/r ) m(v ), and so

\;/ v EP, w(11)::; 4r s(v) (log2t -log2s(v))

For a non-leaf vertex tJ let s(v) = m(v) - m( vmax), and for a
leaf vertex 11 let s (v ) = o. We define the lowest smaller
ancestor of v, denoted by lsa (v), as follows. If each vertex
on the path from the root to v, other than the root, is the
largest son of its father then Isa (v) is the root; otherwise
lsa (v) is the lowest vertex v' on the path from the root to v
such that v' is not the largest son of its father.

In the case of the tree of boxes generated during the
algorithm, for a box b EB *, m (b ) is identical to the number
of points in bnY, bmax is a box in successors( b) that con­
tains the largest number of points in V among all the boxes
in successors( b), and s( b) equals the number of points in
(6 -bmax)nV.

In order to bound the total amount of work for splitting
sets of data points in boxes we shall require a lemma about
weightings on tree vertices.

Tree Weighting Lemma. Let T be a rooted tree with t
vertices such that each non-leaf vertex has at least 2 and at
most r children. Define the weight w (v) of a non-leaf vertex
v by w(v) = s(v) (1 +log2m(lsa(v)) -log2s(v)) and define the
weight of a leaf to be o. Then E w(v) S 4r t logt.

tJET

Proof. The lemma is proved by induction on the
number of leaves in T. The base case is when T consists of a
single leaf vertex v and then w(v) =0. So let the number of
leaves in T be at least 2, then t ~ 2. Let P be a sequence of
vertices in T as follows. The first vertex in P is the root of
T, and for j>l, the jth vertex in P is the largest son of the
(j-1 )st vertex in P. The sequence terminates in a leaf. Let
Q be the set of all vertices v such that tJ is the son of some

vertex in P and v is not the largest son of its father. For a
vertex v, let T( v) denote the subtree rooted at v. We induc­
tively assume that

V v E Q, E w(u) S 4r m(v)logm(v)
uE T(fJ)

We note that for each vertex v in P, lsa (v ) =root, and so

V v EP, w(v)=s(v)(l +log2t -log2s(v))

and

that

s E 4r s(v)(log2t -log2s (v))
vEP

+ E 4r m(v)logm(v)
vEQ

Now since E s(v) S t,
tJEP

E m(v)logm(v) S E s(v)logs(v), we get
vEQ vEP
E w(v) S 4r t log2 t .•

tJET

The running time of the algorithm may be divided into

(i) Time to select a largest box at each stage summed over
all stages.

(ii) Total time required to split the set of data points bnV,
and shrink box b, for all boxes b E B *.

(iii) Total time required to maintain Estimate (b),
Neighbors (b ),and Attractors (b ) for all boxes b EB *•

We maintain a heap [6J for the boxes in B. This allows
us to pick in constant time a box in B that has the largest
volume. Since IB *1::; 2n the total time for heap maintainence
is O(nlogn). Then (i) is O(nlogn).

In Section 4 we show that (ii) is O(n logn). To split
the set of data points bnV efficiently we utilise Ie ordered
lists List;(b), 1::;iSk, the ith list containing the points in
bnV ordered on the ith co-ordinate. The list List; (b) is
embedded in the leaves of acornplete binary search tree
T;( b). When b is split, from the Ie ordered lists for b we
obtain similar lists for all the boxes in successors( b), In Sec-
tion 4 we show how to split the set of data points in a box so
that the total time to split bnV for all boxes bEB * is
o (n logn ). Once the Ie ordered lists corresponding to a box
are available the box can be shrunk in constant time. So the
total time for shrinking all the boxes in B * is 0 (n).

In Section 5 we show that (iii) is 0 (n logn). Since at
each stage we split a box that has the largest volume, and
force the neighbor set of each box b E B to satisfy the invari­
ant V b'ENeighbors (b), dmin(b , b') S Estimate (b), we can
bound the sizes of the attractor sets of all the boxes in B,
and the sizes of the neighbor sets of non-degenerate boxes in
B, by some constant dependent on Ie. This in turn enables
us to obtain a bound of O(n) on the total number of addi­
tions to (insertions into) the neighbor and attractor sets of all
the boxes in B *. Since the size of the attractor set of each
box in B is bounded by a constant dependent on k, we get
that the time for maintaining attractor sets is 0 (n). For a
box b, we implement Neighbors (b) by a data structure which
allows insertions and deletions to be performed in 0 (logn )
time, and allows access to a box b', with the greatest value of
the parameter dmin( b, b'), in 0 (logn) time. Then the total

time, for maintaining neighbor sets of all the boxes in B *,
can be shown to be O(n logn). Finally, only addition of a
box to Neighbors (b) can change the parameter Estimate (b),
and the change due to the addition of a single box can be
computed in constant time. So the total time for maintain­
ing the estimates is 0 (n ). This gives a bound of 0 (n logn)
on (iii).

4. Splitting the set of data points in a box

In this section we describe how to split the set of data
points bnV in a box b efficiently, so that the total time
required to split bnV for all the boxes generated during the
algorithm is O(n logn).

We shall make the following definitions. Let T be a
rooted tree such that each non-leaf vertex has at least two
children. For a vertex tJ in T, we define m(v), tJ max' s( tJ),
and lsa(11). Let m(11) be the number of leaves in the subtree
rooted at tJ, and let the largest son of v, denoted by vmax' be
a child of v such that for any child v' of 11, m(tJmax)~m(v').

119

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on March 29,2024 at 04:15:36 UTC from IEEE Xplore.  Restrictions apply. 



A proper ancestor of a leaf in a rooted tree is a non-leaf
vertex on the path from the root to the leaf. We shall also
require an upper on the number of proper ancestors of a set
of leaves in a complete binary tree, and such a bound is pro­
vided by the following lemma.

Aneestors Lemma. Let T be a complete binary tree of
height h( T) containing 2"(Tl_l vertices and let L be a set of
leaves in T. Let Ancestors (L, T) be the set of all the proper
ancestors in T of the leaves in L. Then
IAncestors(L, T)I~IL I(h( T) -lo~L1)-1.

Proof. The bound holds for h( T) =2. Let us assume
that the upper bound holds for all complete binary trees con­
taining at most 2"(T)-I_l vertices. Let TI and T 2 be the
subtrees rooted at the two sons of the root of T, and let L17
L2' be the sets of of leaves in L that are in T 17 T2 respec­
tively. Then

IAncestors(L I , T 1)1 ~ IL 11(h( T) -1-10~Lll) - 1

IAncestors(L 2, T 2)1:s IL 21(h( T) -1-loglL21) - 1

and

IAncestors(L, T)I = IAncestors(L 1, T 1)1 + IAncestors(L 2, T 2)1 + 1

After some algebraic mainpulation it is seen that

IAncestor8(L, T)I ~ IL I(h( T) -logiL I) - 1

1 1.1 I IL11+IL21
- L 1 t+ L 2 log( IL

2
1 )

I I 1 I
IL11+IL21

- L2 + L1 log( IL
1
1 )

The pr«?of of the fel1\ma follows rro~ ~he oQserlvation that
IL 11+IL 2 1 L 2 1 ILl +IL 21 ILl

log( IL
1
1 ) ~ lLJ and log( IL

2
1·) ~ lI;T' •

The boxes in B * (Le. the set of all the boxes generated
during the algorithm) form a tree in which the vertices are
the boxes in B *, the children of every box b are the boxes in
successors( b), and the leaves are the points in V. In addi­
tion each non-leaf box in this tree has at least 2 and at most
2k children, and the number of vertices in this tree is at most
2n. Suppose we can split the set of data points 6nV in time
proportional to s (6) (1 + log2m ( IS4 ( 6)) -log2s (6)). Then
from the Tree Weighting Lemma it follows that the total
time required to split bnV for all b EB * is 0 (n logn ).

We now describe how to split bnV in time proportional
to S (b )(1 + log2m (lsa (b )) -log2s (b )). Corresponding to each
box b we have k ordered lists List.(b), 1:S i ~ k, the ith list
containing the points in bnV ordered on the ith co-ordinate.
From an entry for a point p in each of these lists there are
pointers to the entries for p in all the remaining k -1 lists.
For each i, 1:S i :S k, List.( b) is embedded in the leaves of a
corresponding complete binary search tree T.( b) of height
fIog2 m (lsa (b))1. The leaves of Ti ( b') are the points in
lsa (b)nV ordered on the ith co-ordinate, however only the
leaves that are points in bnV are linked together to form the
ordered list List. (b). In the process of spliting bnV, we split
the k ordered lists Listi(b), i=l, .... ,k, and for each box
obtain bI in successors (b), we obtain the Ie ordered lists
List.. (b /), i=l, ....,k. For each b/E(successors(b)-{bmax}),
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Li,ti ( b') will be embedded in the leaves of a complete binary
search tree Ti(b /) of height fIog2m(b/)l

To split bnV we first obtain the points in (6 -6max)nV
in time proportional to ,(6) =I(b - bmax)nvl As before let
hi (6) be a hyperplane orthogonal to the itlt co-ordinate axis

and passing through the centre of 6, and let L (Ai ( 6)) and
R(hi (6)) be the corresponding left open and right closed half
spaces. Among the two boxes bnL(hi(b)) and bnR(h;(6)),
let 6i be the one that contains the smaller number of points
in V. We can obtain the set of points 6i nV in time propor­
tional to 16i nvi by searching Listi (6) simultaneously from
both ends and stopping the first time the hyperplane hs( 6) Us

"crossed. We have two cases depending on leu bi)nvl If
1-1

k Ie

leu 6i )nvl<2-k m(b) then Cu b;)n6max =</> and
1-1 Ie .-1

(6 - 6max) = .U 6i , and in this case we spend time propor­
'11

tiona} to k leu 6i )nvl = Ie s( b) in obtaining the set of points
1-1 "

(6 -6max)nV. On the other hand if l(i~l bi)nvI22-km(6)

then we can afford spend 0 (m(b)) time in isolating the
points in (b -6max)nV.

Once we have the set of points (6 - bmax)nV, we get the
corresponding k sorted lists as follows. To obtain a list con­
taining the set of points (6 - 6max)nV sorted on the ith co­
ordinate, we first label all the points in Listi ( b) that are
located in 6 - 6max' We then label all the vertices in Ti ( 6)
that are proper ancestors of the labelled points in Li,ti ( b).
The labelling of the proper ancestors can be performed in
time proportional to the number of proper ancestors plus the
number of points in (b - bmax)nV. Then from the Ancestors
Lemma we can bound the time required for labelling by
0(s(6 )(1 +log2m(lsa(6)) -log2s(6 ))). Next, we traverse the
labelled vetices of Ti ( b) in order and thereby obtain the
labelled points in Listi ( b) Le. the points in (b - bmaxJnV in
sorted order on the ith co-ordinate. The in order traversal
may be performed in time proportional to the number of
labelled vertices. Finally, we unlabel all the labelled vertices.

After the Ie ordered lists for the set (b - bmax)nV have
been obtained, all the points in (b - bmax)nV are deleted
from each of lists Listi ( b), i = 1, .... ,k. For each box 6' in
successors (6 ) - {b max}, we can obtain the Ie ordered lists
List;(b') froIn the Ie ordered lists for (6 - bmax)nV, in
O{kl(b-bmax)nvl) = O(ks(b)) time. In addition, for each
b' in succes8or,( b) - {b max}, Listi ( b'} may be embedded in a
complete binary search tree TiCb') of height flog2m( 6')1 in
O(m(b')) time.

Thus the entire process of splitting 6nV may be accom­
plished in O(1e 2k s{ b) (1 +log2m(lsa( b)) -log2s (b))) time.

6. Maintaining the neighbor and attraetor sets, and the
estimates

In this section we describe how the neighbor and attrac­
tor sets, and the estimates, may be maintained 0 (n logn)
time. We first observe that

(1) A box hi is added to or deleted from Attractor8(b)
whenever b is added to or deleted from Neighbors (b').
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(2) Estimate (b) changes only when a box is added to
Neighbors (b ).

(3) When 6 is split, there can be additions only to the
neighbor sets of boxes in successors (II )UAttractors(b),
only boxes in successors (h) can possibly get added to
the neighbor set of a box in Attr4ctors (h), and for all
bI E successors( b),
Neighbors (b') ~ Neighbors (b)Usuccessors (6 ).

The above observations lead to the following procedure
for modifying the neighbor and attractor sets, and the esti­
mates, during the stage when h is split.

Proeedure Modify-sets-estimates

1. V h' E successors{b),

Neigh6ors( 6') := Neigh60rs (6) Usuccessors( 6) -{ h'},

Attractor8{ b') :=Attractors( II) Usucce8sors( b) - {6'},

If~/nvl2:2 then Estimate(b'):=dmax{b ')

else

Estimate (6 /):= min { dmax{b', b")}.
h"EN"ghbor,( h')

2. V b' EAttractors{ b),

Neighbor8( h') :=Neighbors(b') U successors (II) - {b},

Estimate (b'}:= min { Estimate.{ b'),
min {dmax{b', b")} }.

b"E.tJcc,,,or,( b)

3. V b' E Neigh6ors{ b),

Attr4ctors(b') :=AttrClctor,(b') Usucce88ors( 6) - {b}.

4. V b' E successors (b)UAttractors(b),

delete from Neighbors (6'} every box btl which
satisfies clmin(6/,6") > Estimate (6'),

and if bit is deleted from Neighbors(b')

then also delete b' from Attractors(6").

end Modify-sets-estimates

As before let B * be the set of all the boxes generated
during the execution of Algorithm All-Nearest -Neighbors.
We shall bound the total number of boxes that are added to
NeighborlJ(b) and Attractors(b) for all 6 ES* during the
entire execution of the All-Nearest-Neighbors algorithm.
During the stage when b is split, there are at most

2lsuccessors( b)1 (lsucceslJors( 6) 1+INeighbors(b)1+IAttractors(b)1)

a.dditions to the neighbor and attractor sets. So to bound the
total number of additions to the neighbor and attractor sets'
we must bound the size of Neighbors (b) and Attractors(6)
when b is split. Such bounds are provided by the Packing
Lemmas that follow.

We shall let bL denote a box in the current set of boxes
B such that bL has the largest volume among all the boxes in
B.

Packing Lemma 1. Let r be a positive integer. At the
beginning of a stage, if 6 EB then the number of boxes b' in
B such .that dmin(6, b/) S; r dmax{bL ) is at most 2k(2rk+3)A:.

Proof. Let size (b') denote the length of each of the Ie
intervals defining b'• Let

C (b) = ( h': bI E B, dmin( 6, h') ~ r dmuJ bL) }
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and

A (h) = {6' : 6' EB *, successors( hl)nC( 6) ~<P J
Since boxes are split in non-increasing order of size,
V h'EA(b), size(b')2:size(bL). So each box 6' in A{b) may
be shrunk to a box b" such that
dmin(6, b")=dmin(lI, b')S;r dmax{bL), and size (b") = size (bL ).

Let A(b) be the set of boxes obtained by shrinking all the
boxes in A (b) in this manner. We note that the Lq distance
between two points in k-dimensional space is bounded by Ie
times the L 00 distance between the points. It then follows
that each box b in A(b) must be contained in a box 6* such
that size(b *) =(2rk+3) size(bL ), and b- and b have the same
centre. As the boxes in A(b ) are disjoint we get
IA (b )IS; {2rk+3)k. Finally, aslsuccessors(b)I~ 2k, we have

IC(b)l::; 2k IA (b)l::; 2k IJi (b)1 ~ 2k(2rk+3)k .•

Packing Lemma 2. At the beginning of each stage, if
6 EB and ~nvl22 then INeighbors(b)lS;cl(k) where

cl{k) =2A:(2k+3)A:.

Proof. Since Ihnvl2::2, we have
Estimate (6) = dmax{b)~ dmax{6L), and hence
V h' E Neighbors (6), clmin(b, b/)S;Estimate( b):::; dmax( 6L). SO
from Packing Lemma 1 we get INeighbo,.,(h )1~2k(2k+3)k .•

Packing Lemma 3. At the beginning of each stage, if
6 EB then IAttractor,(b )I~ c2(k) where
c2(k) = 12k +2A:(8k+3)k.

Proof. Wlog let a(6), the centre of box b, be the origin.
Let

A F ( 6) = {6' : b' EAttractors( b), dmin(6,6 ')2:4dmax{bL )}

and let

A s{b) = Attractors (b) - A F( b).

From Packing Lemma 1,

IAs(b )1~2k(81e+3)A: .

We first observe that there cannot be a pair of boxes 61,

b2, in AF ( b) such that the centres a(b) =0, a{ 61), a( 62) are
collinear. Assume that there exist such boxes b1 and b2 in
AF ( b), and let

d(0,a(6 2) = d(O,a(b 1» + d(a(b 1),a{6 2))

Then as

and

we get

dmin{b, b2) 2: dmax(b 17 b2) + d(O, a(b 1) -2dmax(bL )

> dmax{b1 , 62)

Then because of the invariant forced on the neighbor sets at
each stage, we must have that h rt Neigh6ors( b2) and
62 rt Attractors(6) which is a contradiction.
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This gives

d(O, Q( b2)) = d(Q( b1), AQ( b2)) + d(AQ(62), Q( 62))

+ d(O, AQ( 62)) - d(Q(b1)' AQ( b2))

2
~ d(Q(b 1),Q(b 2)) + "3 d(0,a(b 1))

8
~ d(a( bt),a( b2)) + 3" dmax( bL )

This would imply that dmin( b, h2) > dmax( hI' 62) and this can­
not happen because of the invariant forced at each stage on
the neighbor sets.

, Let AAb) = {p:p = d(;,(;;l,» ,b'EAF(b)}. Then

IAF ( 6)I=IAF ( b)~ each point in AF ( b} is at a distance of 1
from the origin, and the distance between any two points in
AF ( 6) is at least 1/3. Around each point in AF ( b) draw a
ball of radius 1/6. No two of these balls can intersect and
the intersection of each such ball with the unit ball around
the origin completely contains a ball of radius 1/12. So the
number of points in AJt.. (b) and hence the number of boxes in
AF ( b) is at most 12k • Thus

IAttractors(h)1 = IAs(b)1 + /AF(b)/::; 2k (8k+3)k + 12k.•

From the packing lemmas and the procedure for main­
taining the neighbor and attractor sets, it follows that during
each stage there are a constant number of additions to neigh­
bor and attractor sets. Since there are at most 2n stages it
follows that 0 (n) boxes are added to the neighbor and
attractor sets during the entire execution of the All­
Nearest-Neighbors algorithm. The size of the attractor set
of any box in B never grows beyond a constant because at
the beginning of a stage the size of the attractor set is
bounded by a constant and during a stage there can be only a
constant number additions to an attractor set. So the total
time for maintaining attractor sets is 0 (n). The time to
maintain the estimates is also 0 (n) because the change in
Estimate(b) due to the addition of a box to Neighbor8(b) ca.n
be computed in constant time. We implement Neighbors (b)
by a data structure which allows insertions and deletions in
o (logn) time, and allows access to a box b I that has the larg­
est value for the parameter dmin( b, b') in 0 (logn) time. A
heap or a 2-3 tree suffices [6]. Then the total work to main­
tain the neighbors sets is O( n logn).

8. AII-m-Nearest-Neighbors

To get an algorithm for the All--m-Nearest-Neighbors
problem, the All-Nearest-Neighbors algorithm is modified as
follows.

(1) Any box b/Elmmediate-successors(b) such that
Ib/nvl< m+l is immediately split into Ib'nvf boxes each
containing exactly one point in V.
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(2) Let r1(b) ::; r 2( b) ::; .... ::; rm( b) ::; .... be a non-decreasing
sequence of the distances in the multiset
{ r : r =dmax( b, b'), b' E Neighbors (b)}. Then

!dmax( 6), if ~nvl2m+l
E8timate (b) =

r m ( b), otherwise

The sizes of the attractor sets of all the boxes in B can be
bounded by c2(Ie) m, and the sizes of the neighbor sets of
non-degenerate boxes in B can be bounded by el(k), where
c1(Ie), e2(k) are constants dependent on k. During each stage
there are 0 (m 2) additions to the neighbor and attractor sets,
and the number of stages is O(n/m). Then the running time
may be shown to be O( m n logn).

'1. Conclusion

We have presented an 0 (n logn) algorithm for the All­
Nearest-Neighbors problem. The running time of the algo­
rithm is optimal upto a constant in the algebraic decision
tree model of computation. If the metric in the given prob­
lem is positive definite or semidefinite rather than one the
standard L, metrics, the problem can be transformed in
linear time to a problem with £2 (euclidean) metric without
increasing the dimension. A slight modification of the All­
Nearest-Neighbors algorithm gives an 0 (m n logn) algo­
rithm for the All-m-Nearest-Neighbors problem.
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