Max Flow and Min-Cost Flow in Almost-Linear Time

Yang P. Liu (Stanford) and Li Chen (Georgia Tech)

Joint with

Rasmus Kyng

Richard Peng U. Waterloo

Maximilian Probst Gutenberg ^{ЕТН}

Sushant Sachdeva U. Toronto

Maximum Flow

Directed graph G = (V, E). m edges, n vertices, source s, sink t edge *capacities* $u_e \ge 0$, integer in [0, U], where $U = m^{O(1)}$

Maximum Flow

Directed graph G = (V, E). m edges, n vertices, source s, sink t edge capacities $u_e \ge 0$, integer in [0, U], where $U = m^{O(1)}$

Goal: Route maximum flow from $s \rightarrow t$, Subject to capacities u_e

 $f \in \mathbb{R}^{E}$, i.e. a real vector on the edges

 $f \in \mathbb{R}^{E}$, i.e. a real vector on the edges

 $f \in \mathbb{R}^{E}$, i.e. a real vector on the edges

Capacity constraint: $0 \le f_e \le u_e$

 $f \in \mathbb{R}^{E}$, i.e. a real vector on the edges

 $f \in \mathbb{R}^{E}$, i.e. a real vector on the edges

8

 $f \in \mathbb{R}^{E}$, i.e. a real vector on the edges

Linear Program for Max-Flow

min
f
$$-f_e^{\#}$$
Max flowFor all edges e $0 \le f_e \le u_e$ Direction and
Capacity constraintsFor all vertices x $B^T f = 0$ Net flow constraints

Linear Program for Max-Flow

$$\min_{f} - f_{e^{\#}}$$
Max flowFor all edges e $0 \le f_{e} \le u_{e}$ Direction and
Capacity constraintsFor all vertices x $B^{T}f = 0$ Net flow constraints

[C-Kyng-L-Peng-Probst Gutenberg-Sachdeva] Can solve max-flow in $m^{1+o(1)}$ time

General Convex Flow Program

min
$$f$$
 $\sum_{e} cost_{e}(f_{e})$ Flow CostFor all edges e $0 \le f_{e} \le u_{e}$ Direction and
Capacity constraintsFor all vertices x $B^{T}f = d$ Net flow constraints

[C-Kyng-L-Peng-Probst Gutenberg-Sachdeva] Can solve general convex* flows in $m^{1+o(1)}$ time *(assuming costs are specified as efficient self-concordant functions)

Applications: Almost-Linear time Algorithms

(Min-cost) Bi-partite matching

Min-cost flow

Negative weight shortest paths

Worker assignment

Optimal Transport

Directed flows with vertex capacities / costs

Undirected vertex connectivity

Flow diffusion

Applications: Almost-Linear time Algorithms

(Min-cost) Bi-partite matching Matrix Scaling Min-cost flow **Isotonic Regression** Negative weight shortest paths Weighted *p*-norm Flows Worker assignment **Entropic-regularized Optimal Transport Optimal Transport** ... Directed flows with vertex capacities / costs Undirected vertex connectivity Flow diffusion

Comparison to Previous Works

Comparison to Previous Works

Comparison to Previous Works

Key Ingredient I: L1 Interior Point Method (IPM)

Outer Algorithm

 $\Phi(f + \Delta) \le \Phi(f) + g^{\mathsf{T}}\Delta + \|L\Delta\|_2^2$ 2nd order Taylor expansion $g = \nabla \Phi$ $L_e = \frac{1}{\min(u_e - f_e, f_e)}$ Symmetrized residual²³apacity

 $\Phi(f + \Delta) \le \Phi(f) + g^{\top}\Delta + \|L\Delta\|_2^2$ minimize over circulations $\Delta : B^{\top}\Delta = 0$

$$g = \nabla \Phi$$

$$L_e = \frac{1}{\min(u_e - f_e, f_e)}$$

 $\Phi(f + \Delta) \le \Phi(f) + g^{\mathsf{T}}\Delta + \|L\Delta\|_2^2$ minimize over circulations $\Delta : B^{\mathsf{T}}\Delta = 0$ $g = \nabla \Phi$ $L_e = \frac{1}{\min(u_e - f_e, f_e)}$ 25

L1 IPM

 $\Phi(f + \Delta) \le \Phi(f) + g^{\mathsf{T}}\Delta + ||L\Delta||_1^2$ minimize over circulations $\Delta : B^{\mathsf{T}}\Delta = 0$ $g = \nabla \Phi$ $L_e = \frac{1}{\min(u_e - f_e, f_e)}$ 26

Min-ratio Cycle

 $\min_{B^{\mathsf{T}}\Delta=0} \frac{g^{\mathsf{T}}\Delta}{\|L\Delta\|_1}$

$$g^{\mathsf{T}}\Delta = -4 + 1 + 3 + 1 = 1$$

Min-ratio Cycle

 $\min_{B^{\mathsf{T}}\Delta=0} \frac{g^{\mathsf{T}}\Delta}{\|L\Delta\|_1}$

Edges and lengths are undirected Gradient has a direction

Optimal solution can be assumed to be a simple cycle

L1 IPM

- [C-Kyng-L-Peng-Probst Gutenberg-Sachdeva] There is an IPM for max-flow such that 1. $m^{1+o(1)}$ iterations, each subproblem a min-ratio cycle $\min_{B^{T}\Delta=0} \frac{g^{T}\Delta}{\|L\Delta\|_{1}}$
- 2. a $m^{o(1)}$ -approximate solution suffices at each iteration
- 3. At most $m^{1+o(1)}$ total changes to g_e , L_e over all edges e
- 4. For each min-ratio cycle problem, $\frac{g^{\mathsf{T}}(f^*-f)}{\|L(f^*-f)\|_1} \leq -0.1$

Key Ingredient II: Min-ratio Cycle Data-Structure

Inner Algorithm

Approx min-ratio cycle via tree embeddings

Goal: Approximately solve $\min_{B^{T}\Delta=0} \frac{g^{T}\Delta}{\|L\Delta\|_{1}}$

Algorithm:

- $\tilde{O}(m)$ time
- 1. Sample a random "low-stretch spanning tree" T [Alon-Karp-Peleg-West '95, Elkin-Emek-Spielman-Teng '05, Abraham-Bartal-Neiman '09]
- 2. Return the best "tree cycle" in T (one off-tree edge + tree path)

a.k.a. fundamental cycles $\tilde{O}(m)$ time Denoted cycle_T(e)

Sample a Low-Stretch tree T

 $\mathbb{E}_T \left[L \left(\text{cycle}_T(e) \right) \right] \leq \tilde{O}(1) L_e$

 $\mathbb{E}_T \left[L \left(\text{cycle}_T(e) \right) \right] \leq \tilde{O}(1) L_e$

 $\sum \mathbb{E}_T \left[L \left(\text{cycle}_T(e) \right) \right] \leq \tilde{O}(1) \cdot \| L \Delta^* \|_1$

 $\sum L(\operatorname{cycle}_T(e)) \leq \tilde{O}(1) \cdot \|L\Delta^*\|_1$

 $\sum L(\operatorname{cycle}_T(e)) \leq \tilde{O}(1) \cdot \|L\Delta^*\|_1$

Claim follows by averaging. Boost probability by sampling many trees

min-ratio cycle Δ^*

 $\sum g^{\mathsf{T}} \operatorname{cycle}_T(e)$

 $e \in \Delta^*$

With prob ½, by Markov

$$\sum_{e \in \Lambda^*} L(\operatorname{cycle}_T(e)) \le \tilde{O}(1) \cdot \|L\Delta^*\|_1$$

Min-ratio cycle data-structure

[C-Kyng-L-Peng-Probst Gutenberg-Sachdeva] A randomized data-structure that maintains $m^{o(1)}$ "low-stretch" trees And supports in $m^{o(1)}$ amortized time w.h.p.

- 1. Update g_e , L_e for an edge e
- 2. Return a $m^{o(1)}$ -approximate min-ratio cycle
- 3. Route flow along such a cycle

Overall Algorithm

A data-structure maintains a few trees $\{T_i\}$

For $t \leftarrow 1, ..., m^{1+o(1)}$ iterations Update gradients g_e and lengths L_e Update trees $\{T_i\}$ according to LIdentify a circulation Δ approximately minimizing $\frac{g^{\top}\Delta}{\|L\Delta\|_1}$, $f^{(t)} \leftarrow f^{(t-1)} + \alpha \Delta$ Output final flow $f^{(final)}$

• "Partial Tree Building"

Partial Tree on a subset of vertices/edges $\sim 0.99 m$ Recurse on the rest $\sim 0.01 m$

• "Partial Tree Maintenance"

Maintain partial tree through 0.01 m updates, then rebuild Pass edge update to the recursive DS on the next level

• Challenges:

Recursion should reduce #vertices and #edges Maintain the smaller graph under edge updates/vertex splits

$$K = m^{1/d}$$

$$K = m^{1/d}$$

How C(G, F) Changes?

How C(G, F) Changes?

$$K = m^{1/d}$$

Adaptivity Issue

- Our DS *does not work* for all update/query sequences
- gradients g_e and lengths L_e affected by DS output non-oblivious adversary
- White-box analysis of DS and IPM
- Gradient/lengths updates reveal which edge becomes important
- $f^* f$ is a good enough direction

Some immediate open problems

- Deterministic?
- $m^{1+o(1)}$ -time to m polylog(m)-time?
- Static Spanner with Embedding Find a sparse subgraph H and Embed each edge (u, v) with a polylog(n)-length path in H?
- Can we improve k-commodity flow?
- General Graph Matching in Almost-Linear Time?

Thanks!!

Rasmus Kyng

Richard Peng U. Waterloo

Maximilian Probst Gutenberg _{ETH}

Sushant Sachdeva U. Toronto