
Max Flow and Min-Cost Flow 
in Almost-Linear Time

Yang P. Liu (Stanford) and Li Chen (Georgia Tech)
Joint with

Rasmus Kyng
ETH

Richard Peng
U. Waterloo

Maximilian 
Probst Gutenberg
ETH

Sushant 
Sachdeva
U. Toronto



Maximum Flow

Directed graph G = (V, E). 𝑚 edges, 𝑛 vertices, source s, sink t
edge capacities 𝑢! ≥ 0, integer in 0, 𝑈 , where 𝑈 = 𝑚"($)

t

1

3

3

4
4

1
2

1

s

2



Maximum Flow

Directed graph G = (V, E). 𝑚 edges, 𝑛 vertices, source s, sink t
edge capacities 𝑢! ≥ 0, integer in 0, 𝑈 , where 𝑈 = 𝑚"($)

t

1

3

3

4
4

1
2

1

sGoal: Route maximum 
flow from 𝑠 → 𝑡,

Subject to capacities 𝑢!

3



Linear Algebraic View for Max-Flow

𝑓 ∈ ℝ& , i.e. a real vector on the edges

t

1

3

3

4
4

1
2

1

s

4



Linear Algebraic View for Max-Flow

𝑓 ∈ ℝ& , i.e. a real vector on the edges

t

1

3

3

4
4

1
2

1

s
3

1
2 3

31
1

1

5



Linear Algebraic View for Max-Flow

𝑓 ∈ ℝ& , i.e. a real vector on the edges

t

1

3

3

4
4

1
2

1

s
3

1
2 3

31
1

1

Capacity constraint: 
0 ≤ 𝑓! ≤ u"

6



Linear Algebraic View for Max-Flow

𝑓 ∈ ℝ& , i.e. a real vector on the edges

t

1

3

3

4
4

1
2

1

s
3

1
2 3

31
1

1

Capacity constraint: 
0 ≤ 𝑓! ≤ u"

𝑒#
5

7



Linear Algebraic View for Max-Flow

𝑓 ∈ ℝ& , i.e. a real vector on the edges

t

1

3

3

4
4

1
2

1

s
3

1
2 3

31
1

1

Capacity constraint: 
0 ≤ 𝑓! ≤ u"

𝑒#
5

Net zero flow constraint: 
all vertices have incoming 

flow=outgoing flow

8



Linear Algebraic View for Max-Flow

𝑓 ∈ ℝ& , i.e. a real vector on the edges

t

1

3

3

4
4

1
2

1

s
3

1
2 3

31
1

1

Capacity constraint: 
0 ≤ 𝑓! ≤ u"

𝑒#
5

Net zero flow constraint: 
all vertices have incoming 

flow=outgoing flowGoal: Route maximum 
flow on 𝑒#

9



Linear Program for Max-Flow

For all edges 𝑒 Direction and 
Capacity constraints

0 ≤ 𝑓! ≤ 𝑢!

min
(

− 𝑓!# Max flow

𝐵)𝑓 = 0For all vertices 𝑥 Net flow constraints

10



Linear Program for Max-Flow

[C-Kyng-L-Peng-Probst Gutenberg-Sachdeva]
Can solve max-flow in 𝑚$*+ $ time

For all edges 𝑒

𝐵)𝑓 = 0For all vertices 𝑥 Net flow constraints

0 ≤ 𝑓! ≤ 𝑢!

min
(

− 𝑓!# Max flow

Direction and 
Capacity constraints

11



General Convex Flow Program

min
(

4
!

𝑐𝑜𝑠𝑡!(𝑓!) Flow Cost

[C-Kyng-L-Peng-Probst Gutenberg-Sachdeva]
Can solve general convex* flows in 𝑚$*+ $ time
*(assuming costs are specified as efficient self-concordant functions)

For all edges 𝑒

𝐵)𝑓 = 𝑑For all vertices 𝑥 Net flow constraints

0 ≤ 𝑓! ≤ 𝑢! Direction and 
Capacity constraints

12



Applications: Almost-Linear time Algorithms

(Min-cost) Bi-partite matching
Min-cost flow
Negative weight shortest paths
Worker assignment
Optimal Transport
Directed flows with vertex capacities / costs
Undirected vertex connectivity
Flow diffusion
…

13



Applications: Almost-Linear time Algorithms

(Min-cost) Bi-partite matching
Min-cost flow
Negative weight shortest paths
Worker assignment
Optimal Transport
Directed flows with vertex capacities / costs
Undirected vertex connectivity
Flow diffusion
…

Matrix Scaling
Isotonic Regression

Weighted 𝑝-norm Flows
Entropic-regularized Optimal Transport

…

14



Comparison to Previous Works

[Galil-Naamad`80, 
Sleator-Tarjan`83]
!𝑂(𝑚𝑛 log 𝑛)

[Goldberg-
Rao`98]
!𝑂(𝑚!/#)

[Ford-
Fulkerson`54]
!𝑂(𝑚#𝑈)

Combinatorial outer and 
inner algorithms



Comparison to Previous Works

[Galil-Naamad`80, 
Sleator-Tarjan`83]
!𝑂(𝑚𝑛 log 𝑛)

[Gao-L-Peng`21,
Brand et al `21]
!𝑂(𝑚!/#$%/&')

[Brand et al `20,
Brand et al `21]
!𝑂(𝑚 + 𝑛!/#)

[Lee-
Sidford`14]
!𝑂(𝑚𝑛%/#)

[Kathuria-L-
Sidford`20]

𝑚(/!)*(%)𝑈%/!

[Madry`13]

!𝑂(𝑚%-/.𝑈%/.)

[Daitch-
Spielman`08]
!𝑂(𝑚!/#)

[Goldberg-
Rao`98]
!𝑂(𝑚!/#)

[Ford-
Fulkerson`54]
!𝑂(𝑚#𝑈)

Combinatorial outer and 
inner algorithms

O √𝑚 or better iteration IPM based outer algorithm + 
Ω 𝑚 -time numerical inner algorithm (ℓ#, ℓ/ flows)

Improved IPM

Improved inner loop via 
dynamic algorithms



Comparison to Previous Works

[Galil-Naamad`80, 
Sleator-Tarjan`83]
!𝑂(𝑚𝑛 log 𝑛)

This work

𝑚%)*(%)

[Gao-L-Peng`21,
Brand et al `21]
!𝑂(𝑚!/#$%/&')

[Brand et al `20,
Brand et al `21]
!𝑂(𝑚 + 𝑛!/#)

[Lee-
Sidford`14]
!𝑂(𝑚𝑛%/#)

[Kathuria-L-
Sidford`20]

𝑚(/!)*(%)𝑈%/!

[Madry`13]

!𝑂(𝑚%-/.𝑈%/.)

[Daitch-
Spielman`08]
!𝑂(𝑚!/#)

[Goldberg-
Rao`98]
!𝑂(𝑚!/#)

[Ford-
Fulkerson`54]
!𝑂(𝑚#𝑈)

Combinatorial outer and 
inner algorithms

O √𝑚 or better iteration IPM based outer algorithm + 
Ω 𝑚 -time numerical inner algorithm (ℓ#, ℓ/ flows)

Improved IPM

Improved inner loop via 
dynamic algorithms

𝑚%)*(%) iteration L1 IPM
+ 

combinatorial inner 
problem

+ 
𝑚*(%) amortized time 
dynamic algorithm for 

inner problem



Key Ingredient I:
L1 Interior Point Method (IPM)
Outer Algorithm

18



Linear Program

19

𝑐𝑜𝑠𝑡 = 𝑐,𝑓



Potential Reduction IPM

Φ 𝑓 = 𝑚 log 𝑐,𝑓 − 𝑂𝑃𝑇 −4
!

(log 𝑓! + log(𝑢! − 𝑓!))

Keep it “far” from hard constraintsImproves objective

[Karmarkar84]

20

𝑐𝑜𝑠𝑡 = 𝑐,𝑓



Potential Reduction IPM

𝑓$ 𝑓%

𝑓&

𝑓'

𝑓(

Rounding
𝑓⋆

21



Potential Reduction IPM

𝑓
𝑓 + Δ?

22



Potential Reduction IPM

Φ 𝑓 + Δ ≤ Φ 𝑓 + 𝑔,Δ + 𝐿Δ -
-

𝑔 = ∇Φ
𝐿! =

$
./0(1"2(",(")

Symmetrized residual capacity
2nd order Taylor expansion

𝑓
𝑓 + Δ?

23



Potential Reduction IPM

Φ 𝑓 + Δ ≤ Φ 𝑓 + 𝑔,Δ + 𝐿Δ -
-

𝑔 = ∇Φ
𝐿! =

$
./0(1"2(",(")

𝑓
𝑓 + Δ?

minimize over circulations Δ : 𝐵,Δ = 0

Electrical flows!

min
4#567

𝑔,Δ
𝐿Δ -

24



Potential Reduction IPM

Φ 𝑓 + Δ ≤ Φ 𝑓 + 𝑔,Δ + 𝐿Δ -
-

𝑓
𝑔 𝑓 + Δ

minimize over circulations Δ : 𝐵,Δ = 0

Electrical flows!

𝑔 = ∇Φ
𝐿! =

$
./0(1"2(",(")

min
4#567

𝑔,Δ
𝐿Δ -

25



L1 IPM

Φ 𝑓 + Δ ≤ Φ 𝑓 + 𝑔,Δ + 𝐿Δ $
-

minimize over circulations Δ : 𝐵,Δ = 0

𝑔 = ∇Φ
𝐿! =

$
./0(1"2(",(")

𝑓
𝑔 𝑓 + Δ

Min Ratio Cycle

min
4#567

𝑔,Δ
𝐿Δ $

26



Min-ratio Cycle

min
4#567

𝑔,Δ
𝐿Δ $

-1

3

-3

4
-4

1
-2

1
2

4

1

1
2

3
2

2

𝑔! 𝐿!

𝑔,Δ = −4 + 1 + 3 + 1 = 1
𝐿Δ $ = 1 + 2 + 1 + 2 = 6

27



Min-ratio Cycle

min
4#567

𝑔,Δ
𝐿Δ $

-1

3

-3

4
-4

1
-2

1
2

4

1

1
2

3
2

2

𝑔! 𝐿!

Edges and lengths are undirected
Gradient has a direction

Optimal solution can be assumed to be a simple cycle

𝑔,Δ = 4 − 1 − 3 − 1 = −1
𝐿Δ $ = 1 + 2 + 1 + 2 = 6

28



L1 IPM
[C-Kyng-L-Peng-Probst Gutenberg-Sachdeva]
There is an IPM for max-flow such that

1. 𝑚$*+($) iterations, each subproblem a min-ratio cycle min
4#567

8#5
95 $

2. a 𝑚+($)-approximate solution suffices at each iteration

3. At most 𝑚$*+($) total changes to 𝑔! , 𝐿! over all edges 𝑒

4. For each min-ratio cycle problem, 8
#((⋆2()
9 (⋆2( $

≤ −0.1

29



Key Ingredient II:
Min-ratio Cycle Data-Structure
Inner Algorithm

30



Approx min-ratio cycle via tree embeddings 

Goal: Approximately solve min
4#567

8#5
95 $

Algorithm:
1. Sample a random “low-stretch spanning tree” T

[Alon-Karp-Peleg-West ‘95, Elkin-Emek-Spielman-Teng ‘05, Abraham-Bartal-Neiman ‘09]

2. Return the best “tree cycle” in T (one off-tree edge + tree path)
a.k.a. fundamental cycles
Denoted cycle! 𝑒

!𝑂(𝑚) time

!𝑂(𝑚) time

31



32

Claim: Some cycle! 𝑒 is an Õ 1 -approx



33

Claim: Some cycle! 𝑒 is an Õ 1 -approx

Sample a Low-Stretch tree T



34

Claim: Some cycle! 𝑒 is an Õ 1 -approx

𝔼) 𝐿 cycle) 𝑒 ≤ Õ 1 𝐿!



35

Claim: Some cycle! 𝑒 is an Õ 1 -approx

min-ratio cycle 𝚫∗

𝔼) 𝐿 cycle) 𝑒 ≤ Õ 1 𝐿!



36

Claim: Some cycle! 𝑒 is an Õ 1 -approx

4
!∈5⋆

𝔼) 𝐿 cycle) 𝑒 ≤ T𝑂 1 ⋅ 𝐿Δ⋆ $

min-ratio cycle 𝚫∗



37

Claim: Some cycle! 𝑒 is an Õ 1 -approx

𝔼) 4
!∈5⋆

𝐿 cycle) 𝑒 ≤ T𝑂 1 ⋅ 𝐿Δ⋆ $

min-ratio cycle 𝚫∗



38

Claim: Some cycle! 𝑒 is an Õ 1 -approx

With prob ½, by Markov

4
!∈5⋆

𝐿 cycle) 𝑒 ≤ T𝑂 1 ⋅ 𝐿Δ⋆ $

min-ratio cycle 𝚫∗



39

Claim: Some cycle! 𝑒 is an Õ 1 -approx

With prob ½, by Markov

4
!∈5⋆

𝐿 cycle) 𝑒 ≤ T𝑂 1 ⋅ 𝐿Δ⋆ $

4
!∈5⋆

𝑔,cycle) 𝑒

min-ratio cycle 𝚫∗



40

Claim: Some cycle! 𝑒 is an Õ 1 -approx

With prob ½, by Markov

4
!∈5⋆

𝐿 cycle) 𝑒 ≤ T𝑂 1 ⋅ 𝐿Δ⋆ $

4
!∈5⋆

𝑔,cycle) 𝑒

= 𝑔, 4
!∈5⋆

cycle) 𝑒

min-ratio cycle 𝚫∗



41

Claim: Some cycle! 𝑒 is an Õ 1 -approx

With prob ½, by Markov

4
!∈5⋆

𝐿 cycle) 𝑒 ≤ T𝑂 1 ⋅ 𝐿Δ⋆ $

4
!∈5⋆

𝑔,cycle) 𝑒

= 𝑔, 4
!∈5⋆

cycle) 𝑒 = 𝑔,Δ⋆

min-ratio cycle 𝚫∗



42

Claim: Some cycle! 𝑒 is an Õ 1 -approx

With prob ½, by Markov

4
!∈5⋆

𝐿 cycle) 𝑒 ≤ T𝑂 1 ⋅ 𝐿Δ⋆ $

4
!∈5⋆

𝑔,cycle) 𝑒

= 𝑔, 4
!∈5⋆

cycle) 𝑒 = 𝑔,Δ⋆

min-ratio cycle 𝚫∗
Claim follows by averaging. 



43

Claim: Some cycle! 𝑒 is an Õ 1 -approx

With prob ½, by Markov

4
!∈5⋆

𝐿 cycle) 𝑒 ≤ T𝑂 1 ⋅ 𝐿Δ⋆ $

4
!∈5⋆

𝑔,cycle) 𝑒

= 𝑔, 4
!∈5⋆

cycle) 𝑒 = 𝑔,Δ⋆

min-ratio cycle 𝚫∗
Claim follows by averaging. Boost probability by sampling many trees



Min-ratio cycle data-structure
[C-Kyng-L-Peng-Probst Gutenberg-Sachdeva]
A randomized data-structure that maintains 𝑚.(0) “low-stretch” trees
And supports in 𝑚.(0) amortized time w.h.p.

1. Update 𝑔2, 𝐿2 for an edge e

2. Return a 𝑚.(0)-approximate min-ratio cycle

3. Route flow along such a cycle

44



Overall Algorithm

A data-structure maintains a few trees 𝑇A

For 𝑡 ← 1,…,𝑚$*+($) iterations
Update gradients 𝑔! and lengths 𝐿!
Update trees 𝑇A according to 𝐿
Identify a circulation Δ approximately minimizing 8

#5
95 $

, 

𝑓(B) ← 𝑓(B2$) + 𝛼Δ
Output final flow 𝑓((ACDE)

45



Dynamic Min Ratio Cycle

• “Partial Tree Building”
Partial Tree on a subset of vertices/edges ~0.99 𝑚
Recurse on the rest ~0.01 𝑚

• “Partial Tree Maintenance”
Maintain partial tree through 0.01 𝑚 updates, then rebuild
Pass edge update to the recursive DS on the next level

• Challenges:
Recursion should reduce #vertices and #edges
Maintain the smaller graph under edge updates/vertex splits



𝐺 = 𝐺!

Rooted Forest 𝐹
≈“partial tree”

“roots”
=vertices of 𝐺'

vertex
sparsification

≈ 𝑚 edges
≈ 𝑚 vertices

𝐶(𝐺!, 𝐹)
≈ 𝑚 edges
≈ 𝑚/𝐾 vertices

“core graph”

Dynamic Min Ratio Cycle 𝐾 = 𝑚0/4



Dynamic Min Ratio Cycle

𝐺 = 𝐺! 𝐶(𝐺!, 𝐹)

vertex
sparsification

≈ 𝑚 edges
≈ 𝑚 vertices

≈ 𝑚 edges
≈ 𝑚/𝐾 vertices

edge
sparsification

𝑆 𝐶 𝐺!, 𝐹 = 𝐺"
≈ 𝑚/𝐾 edges
≈ 𝑚/𝐾 vertices

“core graph” “sparsified core graph”

𝐾 = 𝑚0/4



How 𝐶 𝐺, 𝐹 Changes?
Graph 𝐺
Forest 𝐹
Roots 

Core graph 𝐶(𝐺, 𝐹)

edge ch
anged in

 G



How 𝐶 𝐺, 𝐹 Changes?

remove it from forest!

Graph 𝐺
Forest 𝐹
Roots 

Core graph 𝐶(𝐺, 𝐹)

edge ch
anged in

 G

Vertex Split



Dynamic Min Ratio Cycle

𝐺 = 𝐺! 𝐶(𝐺!, 𝐹)

vertex
sparsification

≈ 𝑚 edges
≈ 𝑚 vertices

≈ 𝑚 edges
≈ 𝑚/𝐾 vertices

edge
sparsification

𝑆 𝐶 𝐺!, 𝐹 = 𝐺"
≈ 𝑚/𝐾 edges
≈ 𝑚/𝐾 vertices

“core graph” “sparsified core graph”

𝐾 = 𝑚0/4

1 edge update 1 vertex split 𝑚+($) edge changes
in ≈ 𝐾-time



Adaptivity Issue

• Our DS does not work for all update/query sequences
• gradients 𝑔! and lengths 𝐿! affected by DS output

non-oblivious adversary
• White-box analysis of DS and IPM
• Gradient/lengths updates reveal which edge becomes important
• 𝑓∗ − 𝑓 is a good enough direction



Some immediate open problems

• Deterministic?
• 𝑚$*+($)-time to 𝑚 𝑝𝑜𝑙𝑦𝑙𝑜𝑔(𝑚)–time?
• Static Spanner with Embedding

Find a sparse subgraph H and
Embed each edge (u, v) with a 𝑝𝑜𝑙𝑦𝑙𝑜𝑔(𝑛)-length path in H?

• Can we improve k-commodity flow?
• General Graph Matching in Almost-Linear Time?



Thanks!!

Rasmus Kyng
ETH

Richard Peng
U. Waterloo

Maximilian 
Probst Gutenberg
ETH

Sushant 
Sachdeva
U. Toronto


