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Maximum Flow

Directed graph G = (V, E). 𝑚 edges, 𝑛 vertices, source s, sink t
edge capacities 𝑢! ≥ 0, integer in 0, 𝑈 , where 𝑈 = 𝑚"($)
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Directed graph G = (V, E). 𝑚 edges, 𝑛 vertices, source s, sink t
edge capacities 𝑢! ≥ 0, integer in 0, 𝑈 , where 𝑈 = 𝑚"($)
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sGoal: Route maximum 
flow from 𝑠 → 𝑡,

Subject to capacities 𝑢!
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Linear Algebraic View for Max-Flow

𝑓 ∈ ℝ& , i.e. a real vector on the edges
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Capacity constraint: 
0 ≤ 𝑓! ≤ u"
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all vertices have incoming 

flow=outgoing flow
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Linear Algebraic View for Max-Flow
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Capacity constraint: 
0 ≤ 𝑓! ≤ u"

𝑒#
5

Net zero flow constraint: 
all vertices have incoming 

flow=outgoing flowGoal: Route maximum 
flow on 𝑒#
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Linear Program for Max-Flow

For all edges 𝑒 Direction and 
Capacity constraints

0 ≤ 𝑓! ≤ 𝑢!

min
(

− 𝑓!# Max flow

𝐵)𝑓 = 0For all vertices 𝑥 Net flow constraints
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Linear Program for Max-Flow

[C-Kyng-L-Peng-Probst Gutenberg-Sachdeva]
Can solve max-flow in 𝑚$*+ $ time

For all edges 𝑒

𝐵)𝑓 = 0For all vertices 𝑥 Net flow constraints

0 ≤ 𝑓! ≤ 𝑢!

min
(

− 𝑓!# Max flow

Direction and 
Capacity constraints
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General Convex Flow Program

min
(

4
!

𝑐𝑜𝑠𝑡!(𝑓!) Flow Cost

[C-Kyng-L-Peng-Probst Gutenberg-Sachdeva]
Can solve general convex* flows in 𝑚$*+ $ time
*(assuming costs are specified as efficient self-concordant functions)

For all edges 𝑒

𝐵)𝑓 = 𝑑For all vertices 𝑥 Net flow constraints

0 ≤ 𝑓! ≤ 𝑢! Direction and 
Capacity constraints
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Applications: Almost-Linear time Algorithms

(Min-cost) Bi-partite matching
Min-cost flow
Negative weight shortest paths
Worker assignment
Optimal Transport
Directed flows with vertex capacities / costs
Undirected vertex connectivity
Flow diffusion
…
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Applications: Almost-Linear time Algorithms

(Min-cost) Bi-partite matching
Min-cost flow
Negative weight shortest paths
Worker assignment
Optimal Transport
Directed flows with vertex capacities / costs
Undirected vertex connectivity
Flow diffusion
…

Matrix Scaling
Isotonic Regression

Weighted 𝑝-norm Flows
Entropic-regularized Optimal Transport

…

14



Comparison to Previous Works

[Galil-Naamad`80, 
Sleator-Tarjan`83]
!𝑂(𝑚𝑛 log 𝑛)

[Goldberg-
Rao`98]
!𝑂(𝑚!/#)

[Ford-
Fulkerson`54]
!𝑂(𝑚#𝑈)

Combinatorial outer and 
inner algorithms



Comparison to Previous Works

[Galil-Naamad`80, 
Sleator-Tarjan`83]
!𝑂(𝑚𝑛 log 𝑛)

[Gao-L-Peng`21,
Brand et al `21]
!𝑂(𝑚!/#$%/&')

[Brand et al `20,
Brand et al `21]
!𝑂(𝑚 + 𝑛!/#)

[Lee-
Sidford`14]
!𝑂(𝑚𝑛%/#)

[Kathuria-L-
Sidford`20]

𝑚(/!)*(%)𝑈%/!

[Madry`13]

!𝑂(𝑚%-/.𝑈%/.)

[Daitch-
Spielman`08]
!𝑂(𝑚!/#)

[Goldberg-
Rao`98]
!𝑂(𝑚!/#)

[Ford-
Fulkerson`54]
!𝑂(𝑚#𝑈)

Combinatorial outer and 
inner algorithms

O √𝑚 or better iteration IPM based outer algorithm + 
Ω 𝑚 -time numerical inner algorithm (ℓ#, ℓ/ flows)

Improved IPM

Improved inner loop via 
dynamic algorithms



Comparison to Previous Works

[Galil-Naamad`80, 
Sleator-Tarjan`83]
!𝑂(𝑚𝑛 log 𝑛)

This work

𝑚%)*(%)

[Gao-L-Peng`21,
Brand et al `21]
!𝑂(𝑚!/#$%/&')

[Brand et al `20,
Brand et al `21]
!𝑂(𝑚 + 𝑛!/#)

[Lee-
Sidford`14]
!𝑂(𝑚𝑛%/#)

[Kathuria-L-
Sidford`20]

𝑚(/!)*(%)𝑈%/!

[Madry`13]

!𝑂(𝑚%-/.𝑈%/.)

[Daitch-
Spielman`08]
!𝑂(𝑚!/#)

[Goldberg-
Rao`98]
!𝑂(𝑚!/#)

[Ford-
Fulkerson`54]
!𝑂(𝑚#𝑈)

Combinatorial outer and 
inner algorithms

O √𝑚 or better iteration IPM based outer algorithm + 
Ω 𝑚 -time numerical inner algorithm (ℓ#, ℓ/ flows)

Improved IPM

Improved inner loop via 
dynamic algorithms

𝑚%)*(%) iteration L1 IPM
+ 

combinatorial inner 
problem

+ 
𝑚*(%) amortized time 
dynamic algorithm for 

inner problem



Key Ingredient I:
L1 Interior Point Method (IPM)
Outer Algorithm
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Linear Program
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𝑐𝑜𝑠𝑡 = 𝑐,𝑓



Potential Reduction IPM

Φ 𝑓 = 𝑚 log 𝑐,𝑓 − 𝑂𝑃𝑇 −4
!

(log 𝑓! + log(𝑢! − 𝑓!))

Keep it “far” from hard constraintsImproves objective

[Karmarkar84]
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Potential Reduction IPM

𝑓$ 𝑓%

𝑓&

𝑓'

𝑓(

Rounding
𝑓⋆
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Potential Reduction IPM

𝑓
𝑓 + Δ?
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Potential Reduction IPM

Φ 𝑓 + Δ ≤ Φ 𝑓 + 𝑔,Δ + 𝐿Δ -
-

𝑔 = ∇Φ
𝐿! =

$
./0(1"2(",(")

Symmetrized residual capacity
2nd order Taylor expansion

𝑓
𝑓 + Δ?
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Potential Reduction IPM

Φ 𝑓 + Δ ≤ Φ 𝑓 + 𝑔,Δ + 𝐿Δ -
-

𝑔 = ∇Φ
𝐿! =

$
./0(1"2(",(")

𝑓
𝑓 + Δ?

minimize over circulations Δ : 𝐵,Δ = 0

Electrical flows!

min
4#567

𝑔,Δ
𝐿Δ -
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L1 IPM

Φ 𝑓 + Δ ≤ Φ 𝑓 + 𝑔,Δ + 𝐿Δ $
-

minimize over circulations Δ : 𝐵,Δ = 0

𝑔 = ∇Φ
𝐿! =

$
./0(1"2(",(")

𝑓
𝑔 𝑓 + Δ

Min Ratio Cycle

min
4#567

𝑔,Δ
𝐿Δ $
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Min-ratio Cycle

min
4#567

𝑔,Δ
𝐿Δ $
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𝑔! 𝐿!

𝑔,Δ = −4 + 1 + 3 + 1 = 1
𝐿Δ $ = 1 + 2 + 1 + 2 = 6
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Min-ratio Cycle

min
4#567

𝑔,Δ
𝐿Δ $
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𝑔! 𝐿!

Edges and lengths are undirected
Gradient has a direction

Optimal solution can be assumed to be a simple cycle

𝑔,Δ = 4 − 1 − 3 − 1 = −1
𝐿Δ $ = 1 + 2 + 1 + 2 = 6
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L1 IPM
[C-Kyng-L-Peng-Probst Gutenberg-Sachdeva]
There is an IPM for max-flow such that

1. 𝑚$*+($) iterations, each subproblem a min-ratio cycle min
4#567

8#5
95 $

2. a 𝑚+($)-approximate solution suffices at each iteration

3. At most 𝑚$*+($) total changes to 𝑔! , 𝐿! over all edges 𝑒

4. For each min-ratio cycle problem, 8
#((⋆2()
9 (⋆2( $

≤ −0.1
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Key Ingredient II:
Min-ratio Cycle Data-Structure
Inner Algorithm
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Approx min-ratio cycle via tree embeddings 

Goal: Approximately solve min
4#567

8#5
95 $

Algorithm:
1. Sample a random “low-stretch spanning tree” T

[Alon-Karp-Peleg-West ‘95, Elkin-Emek-Spielman-Teng ‘05, Abraham-Bartal-Neiman ‘09]

2. Return the best “tree cycle” in T (one off-tree edge + tree path)
a.k.a. fundamental cycles
Denoted cycle! 𝑒

!𝑂(𝑚) time

!𝑂(𝑚) time
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Claim: Some cycle! 𝑒 is an Õ 1 -approx
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Claim: Some cycle! 𝑒 is an Õ 1 -approx

Sample a Low-Stretch tree T
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Claim: Some cycle! 𝑒 is an Õ 1 -approx

𝔼) 𝐿 cycle) 𝑒 ≤ Õ 1 𝐿!
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Claim: Some cycle! 𝑒 is an Õ 1 -approx

min-ratio cycle 𝚫∗

𝔼) 𝐿 cycle) 𝑒 ≤ Õ 1 𝐿!
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Claim: Some cycle! 𝑒 is an Õ 1 -approx

4
!∈5⋆

𝔼) 𝐿 cycle) 𝑒 ≤ T𝑂 1 ⋅ 𝐿Δ⋆ $

min-ratio cycle 𝚫∗
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Claim: Some cycle! 𝑒 is an Õ 1 -approx

𝔼) 4
!∈5⋆

𝐿 cycle) 𝑒 ≤ T𝑂 1 ⋅ 𝐿Δ⋆ $

min-ratio cycle 𝚫∗
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Claim: Some cycle! 𝑒 is an Õ 1 -approx

With prob ½, by Markov

4
!∈5⋆

𝐿 cycle) 𝑒 ≤ T𝑂 1 ⋅ 𝐿Δ⋆ $
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Claim: Some cycle! 𝑒 is an Õ 1 -approx
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Claim: Some cycle! 𝑒 is an Õ 1 -approx

With prob ½, by Markov

4
!∈5⋆

𝐿 cycle) 𝑒 ≤ T𝑂 1 ⋅ 𝐿Δ⋆ $

4
!∈5⋆

𝑔,cycle) 𝑒

= 𝑔, 4
!∈5⋆

cycle) 𝑒 = 𝑔,Δ⋆

min-ratio cycle 𝚫∗
Claim follows by averaging. Boost probability by sampling many trees



Min-ratio cycle data-structure
[C-Kyng-L-Peng-Probst Gutenberg-Sachdeva]
A randomized data-structure that maintains 𝑚.(0) “low-stretch” trees
And supports in 𝑚.(0) amortized time w.h.p.

1. Update 𝑔2, 𝐿2 for an edge e

2. Return a 𝑚.(0)-approximate min-ratio cycle

3. Route flow along such a cycle
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Overall Algorithm

A data-structure maintains a few trees 𝑇A

For 𝑡 ← 1,…,𝑚$*+($) iterations
Update gradients 𝑔! and lengths 𝐿!
Update trees 𝑇A according to 𝐿
Identify a circulation Δ approximately minimizing 8

#5
95 $

, 

𝑓(B) ← 𝑓(B2$) + 𝛼Δ
Output final flow 𝑓((ACDE)
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Dynamic Min Ratio Cycle

• “Partial Tree Building”
Partial Tree on a subset of vertices/edges ~0.99 𝑚
Recurse on the rest ~0.01 𝑚

• “Partial Tree Maintenance”
Maintain partial tree through 0.01 𝑚 updates, then rebuild
Pass edge update to the recursive DS on the next level

• Challenges:
Recursion should reduce #vertices and #edges
Maintain the smaller graph under edge updates/vertex splits



𝐺 = 𝐺!

Rooted Forest 𝐹
≈“partial tree”

“roots”
=vertices of 𝐺'

vertex
sparsification

≈ 𝑚 edges
≈ 𝑚 vertices

𝐶(𝐺!, 𝐹)
≈ 𝑚 edges
≈ 𝑚/𝐾 vertices

“core graph”

Dynamic Min Ratio Cycle 𝐾 = 𝑚0/4



Dynamic Min Ratio Cycle

𝐺 = 𝐺! 𝐶(𝐺!, 𝐹)

vertex
sparsification

≈ 𝑚 edges
≈ 𝑚 vertices

≈ 𝑚 edges
≈ 𝑚/𝐾 vertices

edge
sparsification

𝑆 𝐶 𝐺!, 𝐹 = 𝐺"
≈ 𝑚/𝐾 edges
≈ 𝑚/𝐾 vertices

“core graph” “sparsified core graph”

𝐾 = 𝑚0/4



How 𝐶 𝐺, 𝐹 Changes?
Graph 𝐺
Forest 𝐹
Roots 

Core graph 𝐶(𝐺, 𝐹)

edge ch
anged in

 G



How 𝐶 𝐺, 𝐹 Changes?

remove it from forest!

Graph 𝐺
Forest 𝐹
Roots 

Core graph 𝐶(𝐺, 𝐹)

edge ch
anged in

 G

Vertex Split



Dynamic Min Ratio Cycle

𝐺 = 𝐺! 𝐶(𝐺!, 𝐹)

vertex
sparsification

≈ 𝑚 edges
≈ 𝑚 vertices

≈ 𝑚 edges
≈ 𝑚/𝐾 vertices

edge
sparsification

𝑆 𝐶 𝐺!, 𝐹 = 𝐺"
≈ 𝑚/𝐾 edges
≈ 𝑚/𝐾 vertices

“core graph” “sparsified core graph”

𝐾 = 𝑚0/4

1 edge update 1 vertex split 𝑚+($) edge changes
in ≈ 𝐾-time



Adaptivity Issue

• Our DS does not work for all update/query sequences
• gradients 𝑔! and lengths 𝐿! affected by DS output

non-oblivious adversary
• White-box analysis of DS and IPM
• Gradient/lengths updates reveal which edge becomes important
• 𝑓∗ − 𝑓 is a good enough direction



Some immediate open problems

• Deterministic?
• 𝑚$*+($)-time to 𝑚 𝑝𝑜𝑙𝑦𝑙𝑜𝑔(𝑚)–time?
• Static Spanner with Embedding

Find a sparse subgraph H and
Embed each edge (u, v) with a 𝑝𝑜𝑙𝑦𝑙𝑜𝑔(𝑛)-length path in H?

• Can we improve k-commodity flow?
• General Graph Matching in Almost-Linear Time?



Thanks!!

Rasmus Kyng
ETH

Richard Peng
U. Waterloo

Maximilian 
Probst Gutenberg
ETH

Sushant 
Sachdeva
U. Toronto


