
A Simple Framework for Finding
Balanced Sparse Cuts via APSP

Li Chen (Georgia Tech)
SOSA 2023

Joint work with

Rasmus Kyng
ETH

Maximilian
Probst Gutenberg
ETH

Sushant
Sachdeva
U. Toronto

Sparse Cuts and Expanders

• Graph 𝐺 = 𝑉, 𝐸 , a cut 𝑆 ⊆ 𝑉,

• Sparsity of a cut:

Ψ 𝑆 =
𝐸(𝑆, 𝑉 \ S)

min{ 𝑆 , |𝑉 \ 𝑆|}

• A cut is balanced if min 𝑆 , 𝑉 \ 𝑆 = Ω(𝑛)

• 𝐺 is a 𝝍-expander if every cut has sparsity at

least 𝜓

Sparsity = 2 / 4 = 0.5

Balanced Sparse Cut Problem

• Given graph 𝐺 = 𝑉, 𝐸 of max deg 10

• Sparsity 𝜓, approx ratio 𝛼 ≥ 1

• Find a cut 𝑆 ⊆ 𝑉 with min 𝑆 , 𝑉 \ 𝑆 ≥ 𝑛/100 of sparsity ≤ 𝜓

• Or, certify that every cut X ⊆ 𝑉 with min 𝑋 , 𝑉 \ 𝑋 = Ω(𝑛) has

sparsity ≥ 𝜓/𝛼

Assume WLOG

APX-hard, i.e. 𝛼 > 1 for P

Assuming UGC, 𝛼 = Ω(1) for P

Applications

• Graph Clustering

• Expander Decomposition

• Max Flow

• All-Pair Min-Cut

• Laplacian Systems

• Dynamic Connectivity

• …

Our Result

• Given graph 𝐺 = 𝑉, 𝐸 of max deg 10, sparsity 𝜓

• Find a cut 𝑆 ⊆ 𝑉 with min 𝑆 , 𝑉 \ 𝑆 ≥ 𝑛/100 of sparsity ≤ 𝜓

• Or, certify that every cut X ⊆ 𝑉 with min 𝑋 , 𝑉 \ 𝑋 = Ω(𝑛) has

sparsity 𝜓/𝑂(log 𝑛 log log 𝑛)

• The algorithm runs in =𝑂(𝑛!/𝜓) time, in particular,

𝑂(𝑛) shortest path computations

Our Result

• Given graph 𝐺 = 𝑉, 𝐸 of max deg 10, sparsity 𝜓

• Find a cut 𝑆 ⊆ 𝑉 with min 𝑆 , 𝑉 \ 𝑆 ≥ 𝑛/100 of sparsity ≤ 𝜓

• Or, certify that every cut X ⊆ 𝑉 with min 𝑋 , 𝑉 \ 𝑋 = Ω(𝑛) has

sparsity 𝜓/𝑶(𝐥𝐨𝐠𝟐𝒏)

• The algorithm runs in =𝑂(𝑛!/𝜓) time, in particular,

𝑂(𝑛) shortest path computations

Embeddings

• graphs 𝐺 = 𝑉, 𝐸 , 𝐻 = (𝑉, 𝐹)

• Embedding Π#→% is a collection of path in 𝐺

• ∀ 𝑢, 𝑣 ∈ 𝐻, Π!→# contains a 𝑢𝑣-path in 𝐺

• Congestion 𝑐𝑜𝑛𝑔 Π#→% = 𝑐 if every edge in 𝐺 is used ≤ 𝑐 times

Certificate: Almost Embed an Expander

Let 𝐻 be a 𝜓-expander and 𝐻& ⊆ 𝐻 has all but 𝜓𝑛/200 edges.

If 𝑐𝑜𝑛𝑔 Π#&→% = 𝑐 , 𝐺 has no balanced O(𝜓/𝑐)-sparse cuts.

• Let S be any balanced cut, i.e., n/100 ≤ |𝑆| ≤ 𝑛/2

• 𝐸!! 𝑆, 𝑉\S ≥ 𝐸! 𝑆, 𝑉\S − 𝐸(𝐻\𝐻′) ≥ 𝜓 𝑆 − 𝜓𝑛/200 ≥ 𝜓 𝑆 /2

• Every cut edge in 𝐻" uses a path crossing the cut in 𝐺 at least once.

• Every cut edge in 𝐺 is used at most c times.

• 𝐸# 𝑆, 𝑉\S ≥ 𝐸!! 𝑆, 𝑉\S /𝑐 ≥ 𝜓 𝑆 /2c

≥ n / 100

≥ n / 100

S

V\S

Plan

• Embed an Ω(1)-expander with short paths and low congestion

• If can embed most edges, G has no balanced sparse cut

• Otherwise, try to find a balanced sparse cut

• Multiplicative Weight Update (MWU) to control congestion

Alg: Embed Expander via Shortest Paths

• Initialize edge weights 𝑤' = 1 on 𝐺. Step size η = 𝜓/ log 𝑛.
• Let 𝐻 be a Ω(1)-expander. 𝐻& = ∅
• For each edge e = 𝑢, 𝑣 ∈ 𝐻 s.t. 𝑑𝑖𝑠𝑡%,) 𝑢, 𝑣 = 𝑂(log 𝑛 /𝜓)
• Add 𝑒 to 𝐻$

• Embed 𝑒 via 𝑃, the shortest 𝑢𝑣-path in 𝐺
• For each 𝑓 ∈ 𝑃, update 𝑤% = 𝑤%(1 + 𝜂)

• FAIL: If 𝐻\𝐻& has more than 𝑛/100 edges
• SUCCESS: Output the embedding Π#&→% and 𝐻&

Penalize congested edges

Success: embed all but few expander edges

• 𝐻& has all but 𝑛/100 edges.

• Every balanced cut of 𝐺 has sparsity at least Ω(1/𝑐𝑜𝑛𝑔).

Success: embed all but few expander edges

• 𝐻& has all but 𝑛/100 edges.

• Every balanced cut of 𝐺 has sparsity at least Ω(𝝍/ 𝒍𝒐𝒈𝟐 𝒏).

𝑐𝑜𝑛𝑔 = 𝑂(log! 𝑛/𝜓)
• Embed e = 𝑢, 𝑣 with path 𝑃, Δ 𝑤 ! = 𝜂 > 𝑤 𝑃 = 𝑂 𝜂 log 𝑛 /𝜓

• Each edge in 𝐻" increase 𝑤 ! by 𝑂 1 , final 𝑤 ! = 𝑂(𝑛)

• Edge 𝑓 is used 𝑐 times, 𝑤# = (1 + η)$ = 𝑂(𝑛)

• 𝑐 = 𝑂 log 𝑛 /𝜂 = 𝑂(log% 𝑛/𝜓)

• Ball-Growing! Define 𝐵$ = 𝑥 𝑑𝑖𝑠𝑡(𝑢, 𝑥) ≤ 𝑖 , 𝑖 = 0,1, … , 𝐷/2

• ∃𝑖: 𝑣𝑜𝑙 𝐵$%& < 1 + &'' ()* +
,

𝑣𝑜𝑙(𝐵$)

• |𝐸 𝐵$, 𝑉\𝐵$ | ≤ 𝑣𝑜𝑙 𝐵$%& − 𝑣𝑜𝑙 𝐵$

< &'' ()* +
,

𝑣𝑜𝑙 𝐵$ < &''' ()* +
,

|𝐵$|

• Similar argument holds in our case (weighted with total weight 𝑤 & = 𝑂 𝑛)

Fail: many distant pairs

• 𝐹 = 𝐻\𝐻′ contains 𝑛/100 pairs each of which are Ω(log 𝑛 /𝜓) apart.

If 𝑢 and 𝑣 are 𝐷 apart, can find cut of sparsity O(log 𝑛 /𝐷)

……

Fail: many distant pairs

• 𝐹 = 𝐻\𝐻′ contains 𝑛/100 pairs each of which are Ω(log 𝑛 /𝜓) apart.

• For each pair, find a 𝜓-sparse cut and peel the smaller side

• Final cut is 𝜓-sparse and has at least 𝑛/100 vertices on each side

Conclusion

• 𝑂(log 𝑛 log log 𝑛)-Balanced Sparse Cut via 𝑂(𝑛) Shortest Paths

• Sparsity or Conductance (arbitrary degree)

• Compute Shortest Paths on graph w/ increasing weight

• 𝜅-approx SP gives 𝑂(𝜅 log 𝑛 log log 𝑛)-approx. balanced sparse cut

• 𝑚&%-(&)-time/ 𝑚-(&)-approx Decremental APSP gives 𝑚&%-(&)/𝜓 runtime
[Chuzhoy ’21, Bernstein-Probst Gutenberg-Saranurak ’21]

• Approx. multi-comm flow from MWU to decremental APSP

Thanks!!

Rasmus Kyng
ETH

Maximilian
Probst Gutenberg
ETH

Sushant
Sachdeva
U. Toronto

