A Simple Framework for Finding Balanced Sparse Cuts via APSP Li Chen (Georgia Tech) SOSA 2023

Joint work with

Rasmus Kyng ETH

Maximilian
Probst Gutenberg ETH

Sushant
Sachdeva
U. Toronto

Sparse Cuts and Expanders

- Graph $G=(V, E)$, a cut $S \subseteq V$,
- Sparsity of a cut:

$$
\Psi(S)=\frac{E(S, V \backslash S)}{\min \{|S|,|V \backslash S|\}}
$$

- A cut is balanced if $\min \{|S|,|V \backslash S|\}=\Omega(n)$
- G is a $\boldsymbol{\psi}$-expander if every cut has sparsity at Sparsity $=2 / 4=0.5$ least ψ

Balanced Sparse Cut Problem

- Given graph $G=(V, E)$ of max deg 10

Assume WLOG

- Sparsity ψ, approx ratio $\alpha \geq 1$
- Find a cut $S \subseteq V$ with $\min \{|S|,|V \backslash S|\} \geq n / 100$ of sparsity $\leq \psi$
- Or, certify that every cut $\mathrm{X} \subseteq V$ with $\min \{|X|,|V \backslash X|\}=\Omega(n)$ has sparsity $\geq \psi / \alpha$

APX-hard, i.e. $\alpha>1$ for P
Assuming UGC, $\alpha=\Omega(1)$ for P

Applications

- Graph Clustering
- Expander Decomposition
- Max Flow
- All-Pair Min-Cut
- Laplacian Systems
- Dynamic Connectivity

Our Result

- Given graph $G=(V, E)$ of max deg 10 , sparsity ψ
- Find a cut $S \subseteq V$ with $\min \{|S|,|V \backslash S|\} \geq n / 100$ of sparsity $\leq \psi$
- Or, certify that every cut $\mathrm{X} \subseteq V$ with $\min \{|X|,|V \backslash X|\}=\Omega(n)$ has sparsity $\psi / O(\log n \log \log n)$
- The algorithm runs in $\tilde{O}\left(n^{2} / \psi\right)$ time, in particular,
$O(n)$ shortest path computations

Our Result

- Given graph $G=(V, E)$ of max deg 10 , sparsity ψ
- Find a cut $S \subseteq V$ with $\min \{|S|,|V \backslash S|\} \geq n / 100$ of sparsity $\leq \psi$
- Or, certify that every cut $\mathrm{X} \subseteq V$ with $\min \{|X|,|V \backslash X|\}=\Omega(n)$ has sparsity $\psi / O\left(\log ^{2} n\right)$
- The algorithm runs in $\tilde{O}\left(n^{2} / \psi\right)$ time, in particular, $O(n)$ shortest path computations

Embeddings

- graphs $G=(V, E), H=(V, F)$
- Embedding $\Pi_{H \rightarrow G}$ is a collection of path in G
- $\forall(u, v) \in H, \Pi_{H \rightarrow G}$ contains a $u v$-path in G
- Congestion cong $\left(\Pi_{H \rightarrow G}\right)=c$ if every edge in G is used $\leq c$ times

Certificate: Almost Embed an Expander

Let H be a ψ-expander and $H^{\prime} \subseteq H$ has all but $\psi n / 200$ edges.
If $\operatorname{cong}\left(\Pi_{H^{\prime} \rightarrow G}\right)=c, G$ has no balanced $O(\psi / c)$-sparse cuts.

- $\left|E_{G}(S, V \backslash S)\right| \geq\left|E_{H^{\prime}}(S, V \backslash S)\right| / c \geq \psi|S| / 2 c$

Plan

- Embed an $\Omega(1)$-expander with short paths and low congestion
- If can embed most edges, G has no balanced sparse cut
- Otherwise, try to find a balanced sparse cut
- Multiplicative Weight Update (MWU) to control congestion

Alg: Embed Expander via Shortest Paths

- Initialize edge weights $w_{e}=1$ on G. Step size $\eta=\psi / \log n$.
- Let H be a $\Omega(1)$-expander. $H^{\prime}=\varnothing$
- For each edge $\mathrm{e}=(u, v) \in H$ s.t. $\operatorname{dist}_{G, w}(u, v)=O(\log n / \psi)$
- Add e to H^{\prime}
- Embed e via P, the shortest $u v$-path in G
- For each $f \in P$, update $w_{e}=w_{e}(1+\eta)$
- FAIL: If $H \backslash H^{\prime}$ has more than $n / 100$ edges
- SUCCESS: Output the embedding $\Pi_{H^{\prime} \rightarrow G}$ and H^{\prime}

Success: embed all but few expander edges

- H^{\prime} has all but $n / 100$ edges.
- Every balanced cut of G has sparsity at least $\Omega(1 /$ cong $)$.

Success: embed all but few expander edges

- H^{\prime} has all but $n / 100$ edges.
- Every balanced cut of G has sparsity at least $\Omega\left(\boldsymbol{\psi} / \boldsymbol{\operatorname { l o g }}^{\mathbf{2}} \boldsymbol{n}\right)$.

$$
\operatorname{cong}=O\left(\log ^{2} n / \psi\right)
$$

- Embed $\mathrm{e}=(u, v)$ with path $P, \Delta\|w\|_{1}=\eta \cdot w(P)=O(\eta \log n / \psi)$
- Each edge in H^{\prime} increase $\|w\|_{1}$ by $O(1)$, final $\|w\|_{1}=O(n)$
- Edge f is used c times, $w_{f}=(1+\eta)^{c}=O(n) \quad$ - For each $f \in P$, update $w_{e}=w_{e}(1+\eta)$
- $c=O(\log n / \eta)=O\left(\log ^{2} n / \psi\right)$

Fail: many distant pairs

- $F=H \backslash H^{\prime}$ contains $n / 100$ pairs each of which are $\Omega(\log n / \psi)$ apart.

If u and v are D apart, can find cut of sparsity $\mathrm{O}(\log n / D)$

- Ball-Growing! Define $B_{i}=\{x \mid \operatorname{dist}(u, x) \leq i\}, i=0,1, \ldots, D / 2$
- $\exists i: \operatorname{vol}\left(B_{i+1}\right)<\left(1+\frac{100 \log n}{D}\right) \operatorname{vol}\left(B_{i}\right)$
- $\left|E\left(B_{i}, V \backslash B_{i}\right)\right| \leq \operatorname{vol}\left(B_{i+1}\right)-\operatorname{vol}\left(B_{i}\right)$

$$
<\frac{100 \log n}{D} \operatorname{vol}\left(B_{i}\right)<\frac{1000 \log n}{D}\left|B_{i}\right|
$$

- Similar argument holds in our case (weighted with total weight $\|w\|_{1}=O(n)$)

Fail: many distant pairs

- $F=H \backslash H^{\prime}$ contains $n / 100$ pairs each of which are $\Omega(\log n / \psi)$ apart.
- For each pair, find a ψ-sparse cut and peel the smaller side
- Final cut is ψ-sparse and has at least $n / 100$ vertices on each side

Conclusion

- $O(\log n \log \log n)$-Balanced Sparse Cut via $O(n)$ Shortest Paths
- Sparsity or Conductance (arbitrary degree)
- Compute Shortest Paths on graph w/ increasing weight
- κ-approx SP gives $O(\kappa \log n \log \log n)$-approx. balanced sparse cut
- $m^{1+o(1)}$-time/ $m^{o(1)}$-approx Decremental APSP gives $m^{1+o(1)} / \psi$ runtime [Chuzhoy '21, Bernstein-Probst Gutenberg-Saranurak '21]
- Approx. multi-comm flow from MWU to decremental APSP

Thanks!!

Rasmus Kyng
ETH

Maximilian
Probst Gutenberg ETH

Sushant
Sachdeva
U. Toronto

