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Sparse Cuts and Expanders

• Graph 𝐺 = 𝑉, 𝐸 , a cut 𝑆 ⊆ 𝑉,

• Sparsity of a cut: 

Ψ 𝑆 =
𝐸(𝑆, 𝑉 \ S)

min{ 𝑆 , |𝑉 \ 𝑆|}

• A cut is balanced if min 𝑆 , 𝑉 \ 𝑆 = Ω(𝑛)

• 𝐺 is a 𝝍-expander if every cut has sparsity at 

least 𝜓

Sparsity = 2 / 4 = 0.5



Balanced Sparse Cut Problem

• Given graph 𝐺 = 𝑉, 𝐸 of max deg 10

• Sparsity 𝜓, approx ratio 𝛼 ≥ 1

• Find a cut 𝑆 ⊆ 𝑉 with min 𝑆 , 𝑉 \ 𝑆 ≥ 𝑛/100 of sparsity ≤ 𝜓

• Or, certify that every cut X ⊆ 𝑉 with min 𝑋 , 𝑉 \ 𝑋 = Ω(𝑛) has 

sparsity ≥ 𝜓/𝛼

Assume WLOG

APX-hard, i.e. 𝛼 > 1 for P

Assuming UGC, 𝛼 = Ω(1) for P



Applications

• Graph Clustering

• Expander Decomposition

• Max Flow

• All-Pair Min-Cut

• Laplacian Systems

• Dynamic Connectivity

• …



Our Result

• Given graph 𝐺 = 𝑉, 𝐸 of max deg 10, sparsity 𝜓

• Find a cut 𝑆 ⊆ 𝑉 with min 𝑆 , 𝑉 \ 𝑆 ≥ 𝑛/100 of sparsity ≤ 𝜓

• Or, certify that every cut X ⊆ 𝑉 with min 𝑋 , 𝑉 \ 𝑋 = Ω(𝑛) has 

sparsity 𝜓/𝑂(log 𝑛 log log 𝑛)

• The algorithm runs in =𝑂(𝑛!/𝜓) time, in particular,

𝑂(𝑛) shortest path computations



Our Result

• Given graph 𝐺 = 𝑉, 𝐸 of max deg 10, sparsity 𝜓

• Find a cut 𝑆 ⊆ 𝑉 with min 𝑆 , 𝑉 \ 𝑆 ≥ 𝑛/100 of sparsity ≤ 𝜓

• Or, certify that every cut X ⊆ 𝑉 with min 𝑋 , 𝑉 \ 𝑋 = Ω(𝑛) has 

sparsity 𝜓/𝑶(𝐥𝐨𝐠𝟐𝒏)

• The algorithm runs in =𝑂(𝑛!/𝜓) time, in particular,

𝑂(𝑛) shortest path computations



Embeddings

• graphs 𝐺 = 𝑉, 𝐸 , 𝐻 = (𝑉, 𝐹)

• Embedding Π#→% is a collection of path in 𝐺

• ∀ 𝑢, 𝑣 ∈ 𝐻, Π!→# contains a 𝑢𝑣-path in 𝐺

• Congestion 𝑐𝑜𝑛𝑔 Π#→% = 𝑐 if every edge in 𝐺 is used ≤ 𝑐 times



Certificate: Almost Embed an Expander

Let 𝐻 be a 𝜓-expander and 𝐻& ⊆ 𝐻 has all but 𝜓𝑛/200 edges.

If 𝑐𝑜𝑛𝑔 Π#&→% = 𝑐 , 𝐺 has no balanced O(𝜓/𝑐)-sparse cuts.

• Let S be any balanced cut, i.e., n/100 ≤ |𝑆| ≤ 𝑛/2

• 𝐸!! 𝑆, 𝑉\S ≥ 𝐸! 𝑆, 𝑉\S − 𝐸(𝐻\𝐻′) ≥ 𝜓 𝑆 − 𝜓𝑛/200 ≥ 𝜓 𝑆 /2

• Every cut edge in 𝐻" uses a path crossing the cut in 𝐺 at least once.

• Every cut edge in 𝐺 is used at most c times.

• 𝐸# 𝑆, 𝑉\S ≥ 𝐸!! 𝑆, 𝑉\S /𝑐 ≥ 𝜓 𝑆 /2c

≥ n / 100

≥ n / 100

S

V\S



Plan

• Embed an Ω(1)-expander with short paths and low congestion

• If can embed most edges, G has no balanced sparse cut

• Otherwise, try to find a balanced sparse cut

• Multiplicative Weight Update (MWU) to control congestion



Alg: Embed Expander via Shortest Paths

• Initialize edge weights 𝑤' = 1 on 𝐺. Step size η = 𝜓/ log 𝑛.
• Let 𝐻 be a Ω(1)-expander. 𝐻& = ∅
• For each edge e = 𝑢, 𝑣 ∈ 𝐻 s.t. 𝑑𝑖𝑠𝑡%,) 𝑢, 𝑣 = 𝑂(log 𝑛 /𝜓)
• Add 𝑒 to 𝐻$

• Embed 𝑒 via 𝑃, the shortest 𝑢𝑣-path in 𝐺
• For each 𝑓 ∈ 𝑃, update 𝑤% = 𝑤%(1 + 𝜂)

• FAIL: If 𝐻\𝐻& has more than 𝑛/100 edges
• SUCCESS: Output the embedding Π#&→% and 𝐻&

Penalize congested edges



Success: embed all but few expander edges

• 𝐻& has all but 𝑛/100 edges.

• Every balanced cut of 𝐺 has sparsity at least Ω(1/𝑐𝑜𝑛𝑔).



Success: embed all but few expander edges

• 𝐻& has all but 𝑛/100 edges.

• Every balanced cut of 𝐺 has sparsity at least Ω(𝝍/ 𝒍𝒐𝒈𝟐 𝒏).

𝑐𝑜𝑛𝑔 = 𝑂(log! 𝑛/𝜓)
• Embed e = 𝑢, 𝑣 with path 𝑃, Δ 𝑤 ! = 𝜂 > 𝑤 𝑃 = 𝑂 𝜂 log 𝑛 /𝜓

• Each edge in 𝐻" increase 𝑤 ! by 𝑂 1 , final 𝑤 ! = 𝑂(𝑛)

• Edge 𝑓 is used 𝑐 times,  𝑤# = (1 + η)$ = 𝑂(𝑛)

• 𝑐 = 𝑂 log 𝑛 /𝜂 = 𝑂(log% 𝑛/𝜓)



• Ball-Growing! Define 𝐵$ = 𝑥 𝑑𝑖𝑠𝑡(𝑢, 𝑥) ≤ 𝑖 , 𝑖 = 0,1, … , 𝐷/2

• ∃𝑖: 𝑣𝑜𝑙 𝐵$%& < 1 + &'' ()* +
,

𝑣𝑜𝑙(𝐵$)

• |𝐸 𝐵$ , 𝑉\𝐵$ | ≤ 𝑣𝑜𝑙 𝐵$%& − 𝑣𝑜𝑙 𝐵$

< &'' ()* +
,

𝑣𝑜𝑙 𝐵$ < &''' ()* +
,

|𝐵$|

• Similar argument holds in our case (weighted with total weight 𝑤 & = 𝑂 𝑛 )

Fail: many distant pairs

• 𝐹 = 𝐻\𝐻′ contains 𝑛/100 pairs each of which are Ω(log 𝑛 /𝜓) apart.

If 𝑢 and 𝑣 are 𝐷 apart, can find cut of sparsity O(log 𝑛 /𝐷)

……



Fail: many distant pairs

• 𝐹 = 𝐻\𝐻′ contains 𝑛/100 pairs each of which are Ω(log 𝑛 /𝜓) apart.

• For each pair, find a 𝜓-sparse cut and peel the smaller side

• Final cut is 𝜓-sparse and has at least 𝑛/100 vertices on each side



Conclusion

• 𝑂(log 𝑛 log log 𝑛)-Balanced Sparse Cut via 𝑂(𝑛) Shortest Paths

• Sparsity or Conductance (arbitrary degree)

• Compute Shortest Paths on graph w/ increasing weight

• 𝜅-approx SP gives 𝑂(𝜅 log 𝑛 log log 𝑛)-approx. balanced sparse cut

• 𝑚&%-(&)-time/ 𝑚-(&)-approx Decremental APSP gives 𝑚&%-(&)/𝜓 runtime
[Chuzhoy ’21, Bernstein-Probst Gutenberg-Saranurak ’21]

• Approx. multi-comm flow from MWU to decremental APSP
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