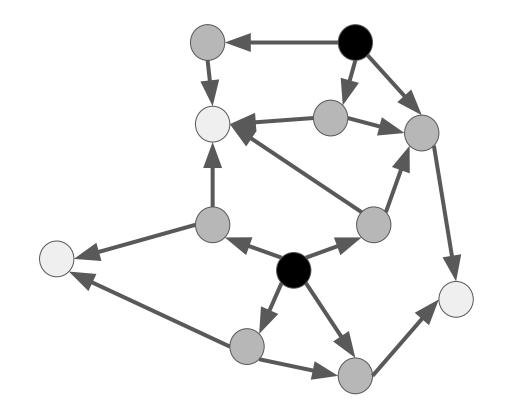
2-Norm Flow Diffusion in Near-Linear Time

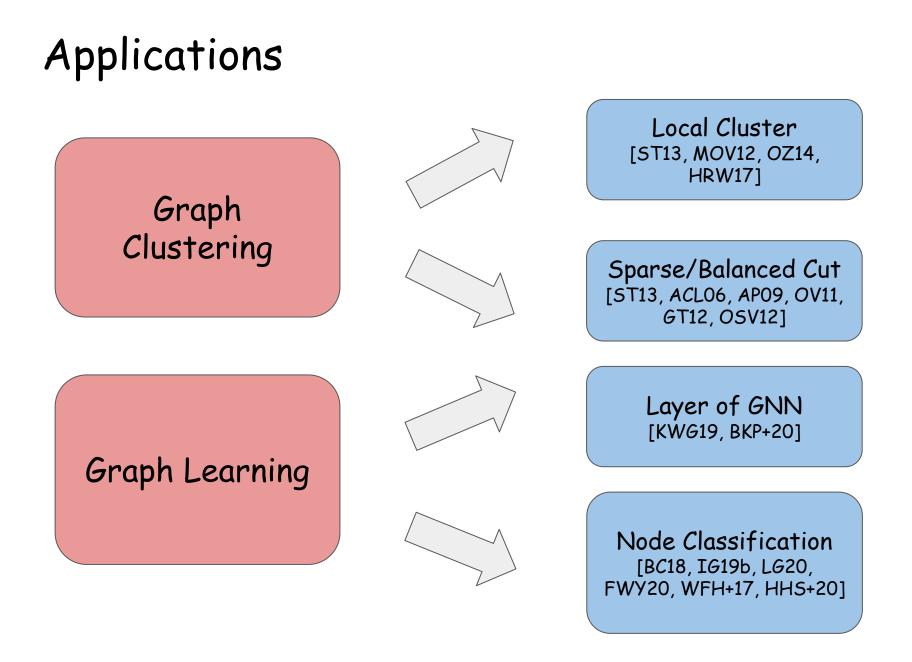
Li Chen Georgia Tech Richard Peng Waterloo

Di Wang Google

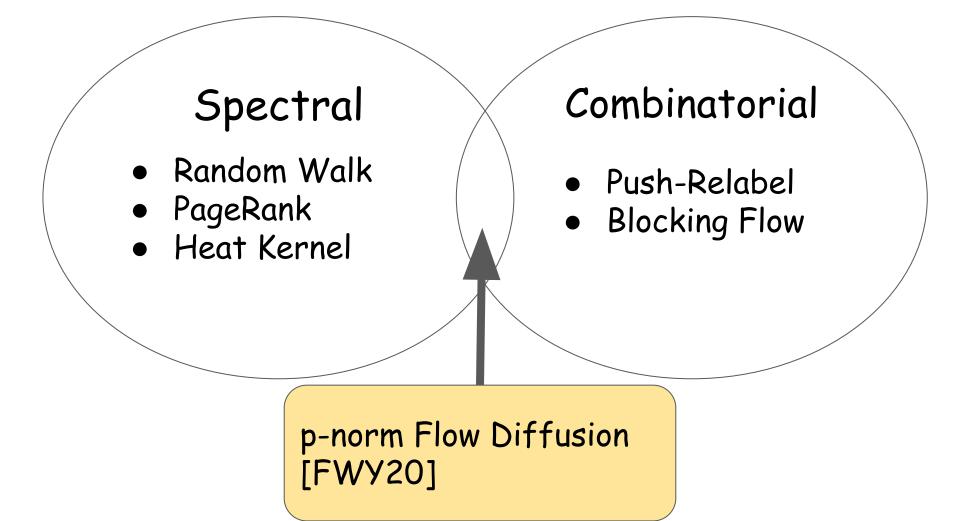
Diffusion on Graphs

Graph G = (V, E) n = |V| m = |E|





Diffusion on Graphs and More



p-norm Flow Diffusion [FWY20]

- $B \in \mathbb{R}^{m^*n}$, Edge Incidence Matrix
- $S \ge 0 \in \mathbb{R}^n$, Supply per Vtx
- $T \ge 0 \in \mathbb{R}^n$, Sink Capacity per Vtx

$$min_{f} ||f||_{p}$$

• $f \in \mathbb{R}^{m}$
• $S + B^{T}f \leq T$

 $\Sigma_{u}S(u) \leq \Sigma_{u}T(u)$

Network flow problem if $\Sigma_{u}S(u) = \Sigma_{u}T(u)$

p-norm Flow Diffusion [FWY20]



Interpolation



Combinatorial

Our Result

Theorem

2-norm Flow Diffusion can be solved up to $(1+\epsilon)$ -error in O~(m log $(1 / \epsilon)$)-time w.h.p.

• Algo in [FWY20] runs in $O(m^3n^2 \log (1 / \epsilon))$ -time.

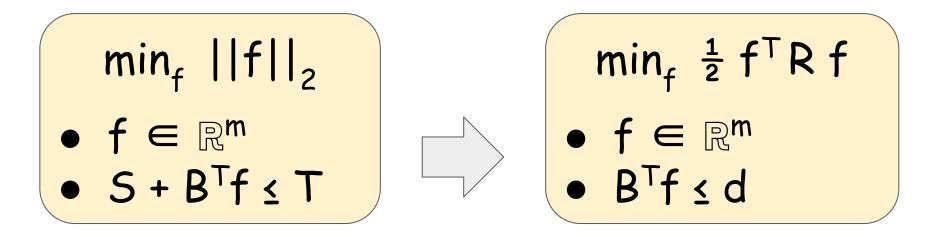
Weighted Case

$$min_{f} ||f||_{2}$$

• $f \in \mathbb{R}^{m}$
• $S + B^{T}f \leq T$

Weighted Case

Diagonal $R \in \mathbb{R}_{\geq 0}^{m^*m}$



$$\sum_{u} S(u) \le \Sigma_{u} T(u)$$
 $d = T - S$ $0 \le \Sigma_{u} d(u)$

Taking Dual

Diagonal $R \in \mathbb{R}_{\geq 0}^{m^*m}$

min_f
$$\frac{1}{2}$$
 f^TR f
• f ∈ ℝ^m
• B^Tf ≤ d

$$0 \leq \Sigma_{u} d(u)$$

Taking Dual

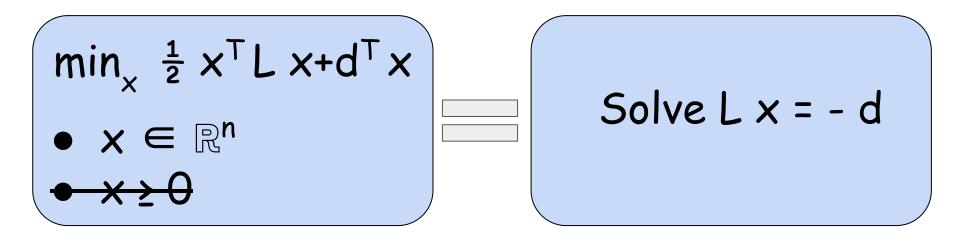
Diagonal $R \in \mathbb{R}_{\geq 0}^{m^*m}$

$$\mathsf{L} = \mathsf{B}^{\mathsf{T}}\mathsf{R}^{-1}\mathsf{B}$$

$$0 \leq \Sigma_u d(u)$$

Unconstrained = Solving Laplacian System

 $L = B^{T}R^{-1}B$ is the Graph Laplacian matrix



- [ST04, KMP10, KMP11, KOSZ13, LS13, CKMPPRX14, KS16, JS20]: O~(m)-Time Solver
- Idea: Translate these to non-negative case

Solver Framework from [ST04]

T(m, k) = time for solving sized-m graph up to k-error

Theorem $T(m, 1+\epsilon) = O(m \log^{c}(m) \log (1 / \epsilon))$

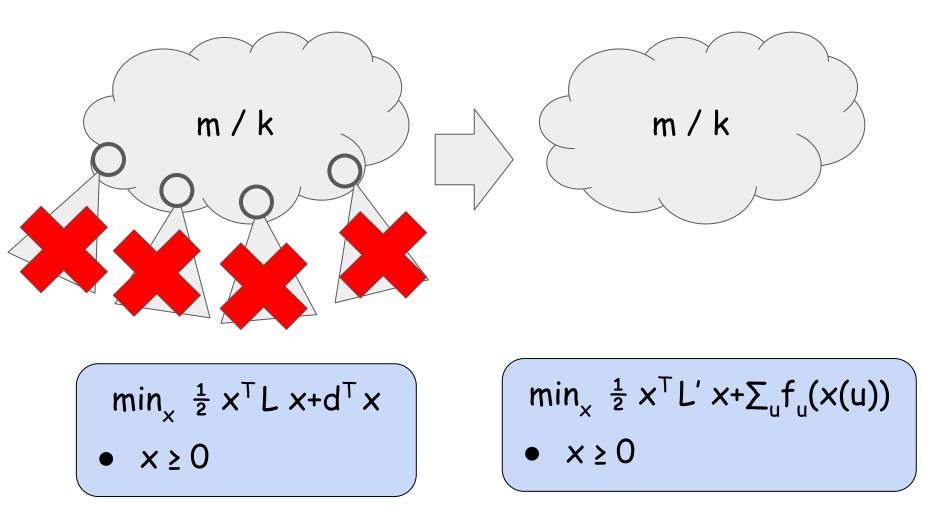
Solver Framework from [ST04]

T(m, k) = time for solving sized-**m** graph up to **k**-error

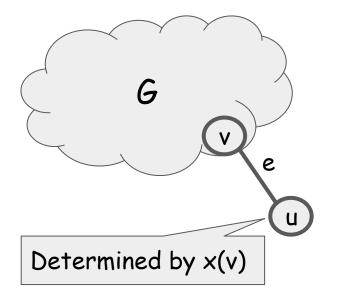
Vtx Reduce: T(n + (m / k), 2) = T(m / k, 2) + O(m)

WARNING: Hidden polylogm everywhere

Vertex Reduce in O~(m)-time



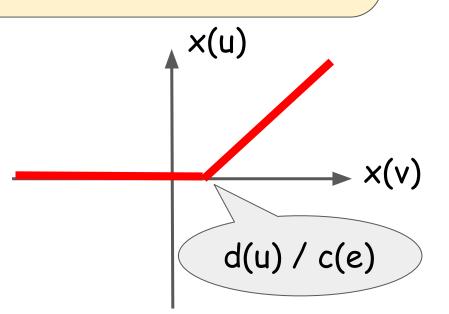
Vertex Reduce: Simplest Case

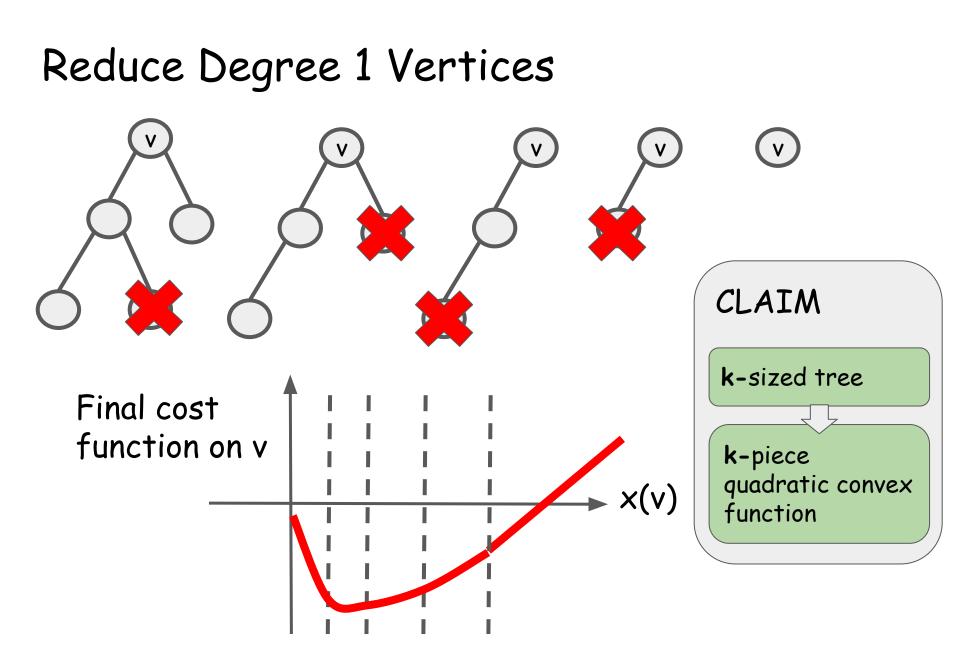


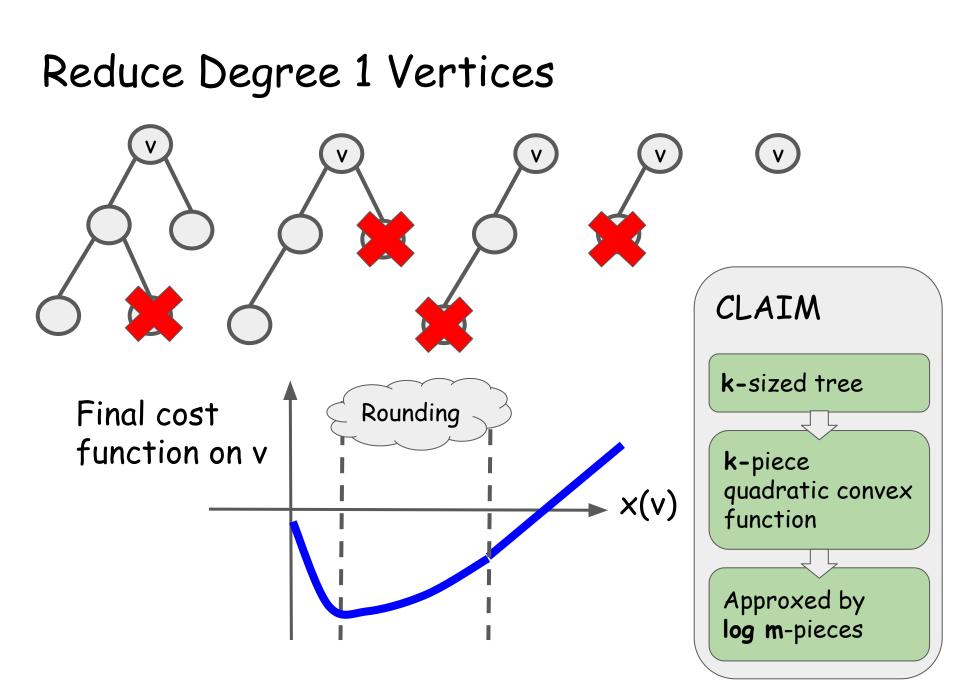
Given x(v), set x(u) minimizing min_x $\frac{1}{2}$ c(e) (x - x(v))² + d(u) x s.t. x ≥ 0

x≥0, OPT when x(u)

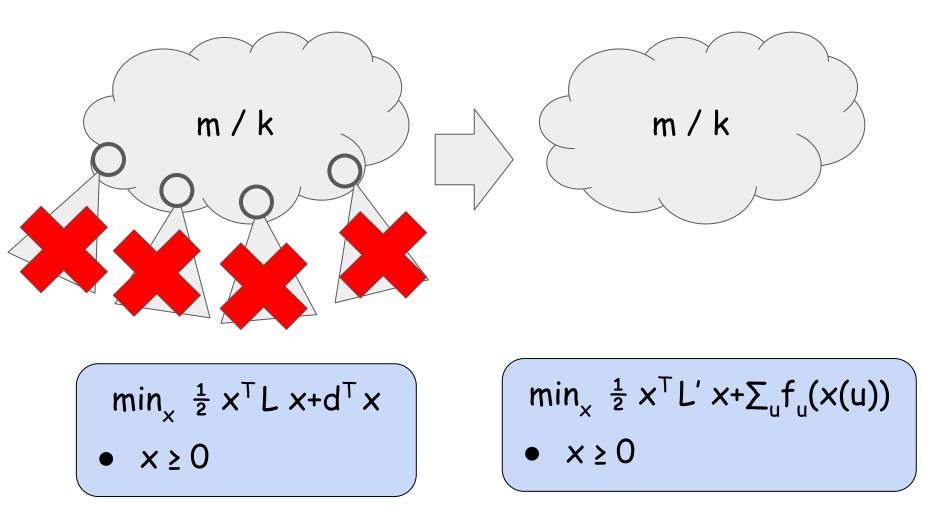
=
$$ReLu(x(v) - d(u) / c(e))$$







Vertex Reduce in O~(m)-time



Solver Framework from [ST04]

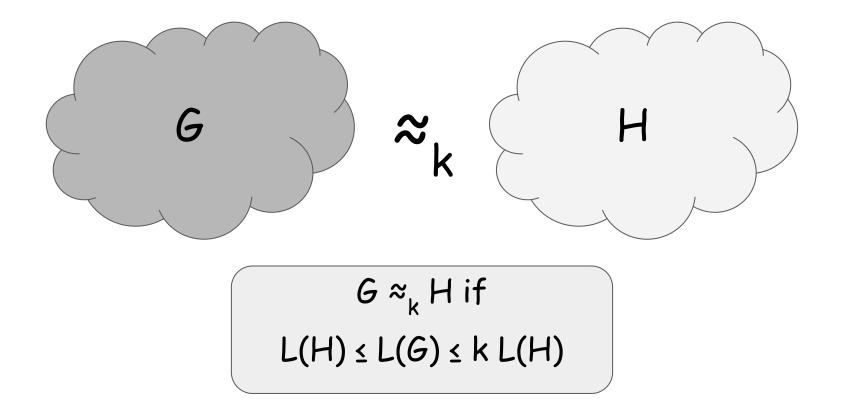
T(m, k) = time for solving sized-**m** graph up to **k**-error

Vtx Reduce:
$$T(n + (m / k), 2) = T(m / k, 2) + O(m)$$

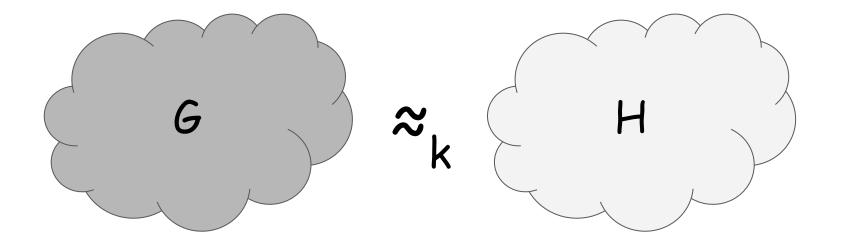
Edge Reduce:
$$T(m, k) = T(n + (m / k), 2) + O(m)$$

WARNING: Hidden polylogm everywhere

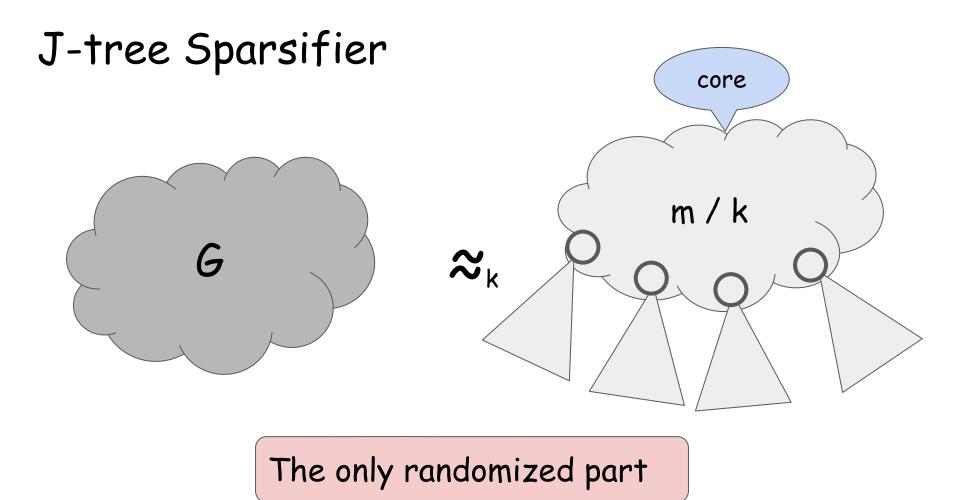
Spectral Approximation



Spectral Approximation



O(1)-approx on H => O(k)-approx on G



J-Tree: First appear in [Mad10] for cut approximation. Can approx distance as well. [CGHPS20]

Solver Framework from [ST04]

T(m, k) = time for solving sized-m graph up to k-error

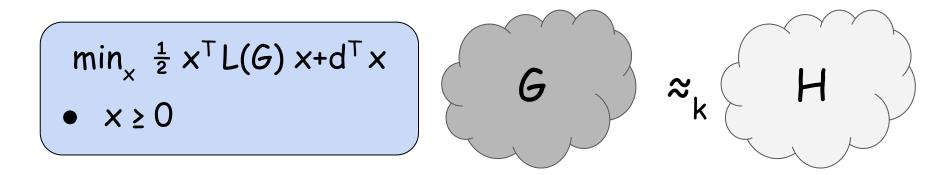
Vtx Reduce:
$$T(n + (m / k), 2) = T(m / k, 2) + O(m)$$

Edge Reduce:
$$T(m, k) = T(n + (m / k), 2) + O(m)$$

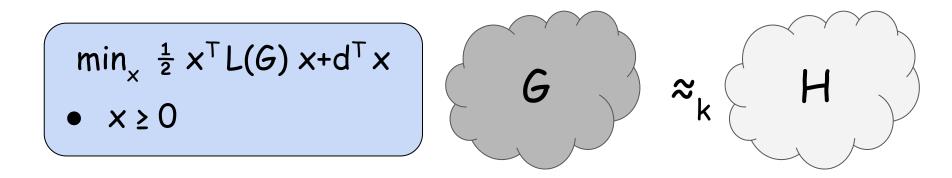
Quality Boost:
$$T(m, 1+\epsilon) = \log(1 / \epsilon) * T(m, \log m)$$

WARNING: Hidden polylogm everywhere

Accelerated Proximal Gradient Method

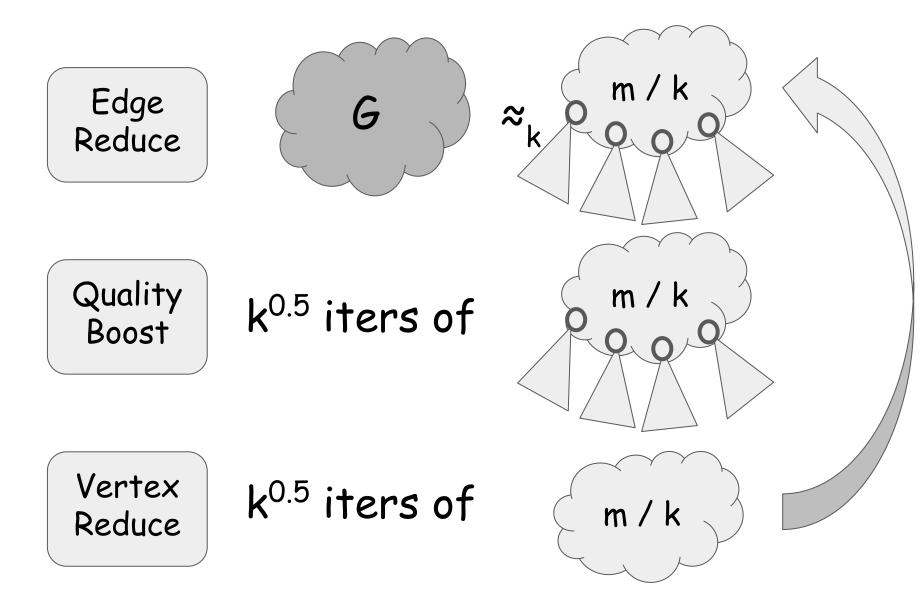


Accelerated Proximal Gradient Method



$$k^{0.5} \text{ iters}$$
of
$$min_x \frac{1}{2} x^T L(H) x + d_i^T x$$
• $x \ge 0$

Combine Everything



Conclusion

- O~(m)-time solver for a wider class of flow problems
- O~(m)-time solver for a class of Non-Negative QP
- Φ -free O~(m)-time algo finding locally biased clusters
- New way dealing x ≥ 0 beyond Interior Point Methods
- Ultra-sparsifier with NICE properties

Open Problems

- Simpler Algo: No recursion?
- Runtime depend on sparsity of S
- Faster runtime

O(m log m), O(m (loglog m)^c)for 2-approx

- Fast p-norm Flow Diffusion Algo
- Use to solve other problem?
 Nonnegative-Laplacian Paradigm?

 $\min_{f} ||f||_{p}$ • $S + B^T f \leq T$

Thank You!