
2-Norm Flow Diffusion
in Near-Linear Time

Li Chen
Georgia Tech

Di Wang
Google

Richard Peng
Waterloo



Diffusion on Graphs

Graph G = (V, E)

n = |V|

m = |E|



Applications

Graph 
Clustering

Graph Learning

Local Cluster
[ST13, MOV12, OZ14, 

HRW17]

Sparse/Balanced Cut
[ST13, ACL06, AP09, OV11, 

GT12, OSV12]

Layer of GNN
[KWG19, BKP+20]

Node Classification
[BC18, IG19b, LG20, 

FWY20, WFH+17, HHS+20]



Diffusion on Graphs and More

Spectral Combinatorial
● Random Walk
● PageRank
● Heat Kernel

● Push-Relabel
● Blocking Flow

p-norm Flow Diffusion 
[FWY20]



p-norm Flow Diffusion [FWY20]

minf  ||f||p 

● f ∈ ℝm

● S + BTf ≤ T

● B ∈ ℝm*n, Edge Incidence Matrix
● S ≥ 0 ∈ ℝn, Supply per Vtx
● T ≥ 0 ∈ ℝn, Sink Capacity per Vtx

ΣuS(u) ≤ ΣuT(u)

Network flow problem if ΣuS(u) = ΣuT(u)



p-norm Flow Diffusion [FWY20]

minf  ||f||p 

● f ∈ ℝm

● S + BTf ≤ T

S(u) + Σvf(u, v) ≤ T(u), u ∈ V

A
F

B

C

E

D

3

3

2

2

1

1

1
1

1

1||f||1 = 5
||f||2 = 2.236…
||f||∞ = 1



Interpolation

minf  ||f||2 

● f ∈ ℝm

● S + BTf ≤ T

minf  ||f||∞ 

● f ∈ ℝm

● S + BTf ≤ T

p = 2 p = ∞

Spectral Combinatorial



Our Result

Theorem
2-norm Flow Diffusion can be solved up to 
(1+ε)-error in O~(m log (1 / ε))-time w.h.p.

● Algo in [FWY20] runs in O(m3n2 log (1 / ε))-time.



Weighted Case

minf  ||f||2 

● f ∈ ℝm

● S + BTf ≤ T

ΣuS(u) ≤ ΣuT(u)



Weighted Case

minf  ||f||2 

● f ∈ ℝm

● S + BTf ≤ T

ΣuS(u) ≤ ΣuT(u)

minf  ½ fT R f

● f ∈ ℝm

● BTf ≤ d

0 ≤ Σud(u) d = T - S

Diagonal R∈ ℝ≥0
m*m



Taking Dual

minf  ½ fT R f

● f ∈ ℝm

● BTf ≤ d

0 ≤ Σud(u) 

Diagonal R∈ ℝ≥0
m*m



Taking Dual

minf  ½ fT R f

● f ∈ ℝm

● BTf ≤ d

0 ≤ Σud(u) 

Diagonal R∈ ℝ≥0
m*m

minx  ½ xT L x+dT x 

● x ∈ ℝn

● x ≥ 0

L = BTR-1 B

minx  ½ xT L x+dT x 

● x ∈ ℝn

● x ≥ 0



Unconstrained = Solving Laplacian System

L = BTR-1 B is the Graph Laplacian matrix

minx  ½ xT L x+dT x 

● x ∈ ℝn

● x ≥ 0

Solve L x = - d

● [ST04, KMP10, KMP11, KOSZ13, LS13, CKMPPRX14, 
KS16, JS20]: O~(m)-Time Solver

● Idea: Translate these to non-negative case



Solver Framework from [ST04]

T(m, k) = time for solving sized-m graph up to k-error

Theorem
T(m, 1+ε) = O(m logc(m) log (1 / ε))



Solver Framework from [ST04]

WARNING: Hidden polylogm everywhere

Vtx Reduce: T(n + (m / k), 2)  = T(m / k, 2) + O(m)

T(m, k) = time for solving sized-m graph up to k-error



Vertex Reduce in O~(m)-time

m / k m / k

minx  ½ xT L x+dT x

● x ≥ 0

minx  ½ xT L’ x+∑ufu(x(u))

● x ≥ 0



Vertex Reduce: Simplest Case

G
v

u

e

Determined by x(v)

Given x(v), set x(u) minimizing

minx ½ c(e) (x - x(v))2 + d(u) x

s.t. x ≥ 0

x ≥ 0, OPT when

x(u)

= ReLu(x(v) - d(u) / c(e))

x(v)

x(u)

d(u) / c(e)



CLAIM

Reduce Degree 1 Vertices
v v v v v

x(v)

Final cost 
function on v

k-sized tree

k-piece 
quadratic convex 
function



CLAIM

Reduce Degree 1 Vertices
v v v v v

x(v)

Final cost 
function on v

k-sized tree

k-piece 
quadratic convex 
function

Approxed by
log m-pieces

Rounding



Vertex Reduce in O~(m)-time

m / k m / k

minx  ½ xT L x+dT x

● x ≥ 0

minx  ½ xT L’ x+∑ufu(x(u))

● x ≥ 0



Solver Framework from [ST04]

WARNING: Hidden polylogm everywhere

Edge Reduce: T(m, k) = T(n + (m / k), 2) + O(m)

Vtx Reduce: T(n + (m / k), 2)  = T(m / k, 2) + O(m)

T(m, k) = time for solving sized-m graph up to k-error



Spectral Approximation

G H≈k

G ≈k H if

L(H) ≤ L(G) ≤ k L(H)



Spectral Approximation

G H

O(1)-approx on H => O(k)-approx on G

≈k



J-tree Sparsifier

G ≈k

m / k

core

The only randomized part

J-Tree: First appear in [Mad10] for cut approximation.
Can approx distance as well. [CGHPS20]



Solver Framework from [ST04]

Quality Boost: T(m, 1+ε)  = log (1 / ε) * T(m, log m)

WARNING: Hidden polylogm everywhere

Edge Reduce: T(m, k) = T(n + (m / k), 2) + O(m)

Vtx Reduce: T(n + (m / k), 2)  = T(m / k, 2) + O(m)

T(m, k) = time for solving sized-m graph up to k-error



Accelerated Proximal Gradient Method

minx  ½ xT L(G) x+dT x

● x ≥ 0
G H≈k



Accelerated Proximal Gradient Method

minx  ½ xT L(G) x+dT x

● x ≥ 0
G H≈k

minx  ½ xT L(H) x+di
T x

● x ≥ 0
k0.5 iters 
of



Combine Everything

G ≈k

k0.5 iters of

m / k

m / k

Edge 
Reduce

Quality 
Boost

Vertex 
Reduce k0.5 iters of m / k



Conclusion

● O~(m)-time solver for a wider class of flow problems

● O~(m)-time solver for a class of Non-Negative QP

● 𝚽-free O~(m)-time algo finding locally biased clusters

● New way dealing x ≥ 0 beyond Interior Point Methods

● Ultra-sparsifier with NICE properties



● Simpler Algo: No recursion?

● Runtime depend on sparsity of S

● Faster runtime

O(m log m), O(m (loglog m)c)for 2-approx

● Fast p-norm Flow Diffusion Algo

● Use to solve other problem?

Nonnegative-Laplacian Paradigm?

Open Problems

minf  ||f||p 

● S + BTf ≤ T



Thank You!


